一种具备三金属铜-钴-钼/泡沫镍多孔电极材料及其制备方法与应用

    公开(公告)号:CN108796535A

    公开(公告)日:2018-11-13

    申请号:CN201810532644.3

    申请日:2018-05-29

    摘要: 本发明公开了一种具备三金属Cu‑Co‑Mo/泡沫镍多孔电极材料及其制备方法与应用,该方法包括:1)先利用有机溶液和酸去除泡沫镍表面油污和氧化层;2)将铜、钴、钼盐化合物前驱体与泡沫镍共同置于高压釜中密闭反应,然后洗涤干燥,得到在表面生长有水热合成产物的泡沫镍;3)将步骤(2)所得泡沫镍在H2氛围中高温煅烧,随后自然冷却,即得到具备三金属Cu‑Co‑Mo/泡沫镍多孔电解水催化剂。该复合材料中三金属合金与基底镍的结合能力强、碱性条件下性能稳定,且具有较大的电化学活性面积,极大的提高了材料的催化活性;该制备方法通过溶剂热法实现三金属与泡沫镍基底的结合,制备工艺简单、烧结温度低、制备过程中能耗低,便于工业化生产。

    一种钼掺杂的铁/镍层状阵列@泡沫镍基复合电极材料及其制备方法与应用

    公开(公告)号:CN108754532B

    公开(公告)日:2021-02-12

    申请号:CN201810531509.7

    申请日:2018-05-29

    摘要: 本发明公开了一种钼掺杂的铁/镍层状阵列@泡沫镍基复合电极材料及其制备方法和应用,所述材料以泡沫镍为基底,泡沫镍的表面生长有铁/镍层状双金属氢氧化物(FeNi‑LDHs)阵列,所述阵列中掺杂有金属钼。其制备方法采用水热法直接在泡沫镍基底上生长FeNi‑LDHs纳米片阵列,再以FeNi‑LDHs阵列为基底通过水热法在其表面掺杂金属Mo,最后通过高温碳化和还原得到具有电催化性能的电极材料。该复合材料在碱性条件下性能稳定,具有较高的重复利用度,较大的电化学活性面积,极大的提高了材料的催化活性;该制备方法制备工艺简单、烧结温度低、制备过程中能耗低,便于工业化生产。

    一种磁性Fe3O4@CeO2复合纳米微粒的制备方法及其应用

    公开(公告)号:CN107445212B

    公开(公告)日:2019-08-16

    申请号:CN201710625327.1

    申请日:2017-07-27

    IPC分类号: G01N21/00

    摘要: 本发明涉及一种磁性Fe3O4@CeO2复合纳米微粒的制备方法及利用其模拟酶活性检测过氧化氢和葡萄糖含量的应用。首先采用水热法制备得到磁性四氧化三铁纳米微粒,再以磁性四氧化三铁纳米微粒为核,在其表面包覆上二氧化铈壳层得到最终的复合纳米微粒。该复合纳米微粒具有模拟过氧化酶催化功能,可用于低浓度过氧化氢以及葡萄糖的检测,具有催化效率高、易于分离、可重复利用等优点,在环境和生物医药等领域有较好的应用前景。

    一种MoS2@Cu2S@泡沫铜复合纳米材料及其制备方法和应用

    公开(公告)号:CN108950585A

    公开(公告)日:2018-12-07

    申请号:CN201810877680.3

    申请日:2018-08-03

    摘要: 本发明公开了一种MoS2@Cu2S@泡沫铜复合纳米材料及其制备方法和应用。本发明的一种MoS2@Cu2S@泡沫铜复合纳米材料的制备方法,包括如下步骤:(1)采用溶液刻蚀法在泡沫铜上制备Cu(OH)2纳米阵列棒;(2)以步骤(1)得到的Cu(OH)2纳米阵列棒为模板,浸泡在结晶水合钼酸盐和硫脲混合溶液中,通过水热合成法转化生成MoS2@Cu2S纳米阵列棒,得复合纳米材料。本发明的MoS2@Cu2S@泡沫铜复合纳米材料由上述的制备方法制备。本发明的一种电解水析氢催化剂,包括上述的MoS2@Cu2S@泡沫铜复合纳米材料。本发明通过水热过程把具有较好析氢活性的MoS2原位生长在Cu2S纳米阵列棒表面,可以利用硫化物良好的电子传导能力来增强复合材料的电催化性能,因此在泡沫铜的表面原位生长MoS2@Cu2S可协同提高复合材料的电催化性能。

    一种生物质衍生硬碳/石墨烯钠离子电池负极材料及其制备方法

    公开(公告)号:CN108777303A

    公开(公告)日:2018-11-09

    申请号:CN201810531471.3

    申请日:2018-05-29

    IPC分类号: H01M4/587 H01M4/36 H01M10/054

    摘要: 本发明公开了一种生物质衍生硬碳/石墨烯钠离子电池负极材料及其制备方法,该方法先将生物质溶解得到生物质溶液,然后将氧化石墨烯和生物质溶液按1:0.01-0.1的质量比均匀混合,得到混合溶液,再分别经过离心、洗涤、冷冻干燥、高温煅烧,得到所述负极材料。该制备方法采用溶胶-凝胶法,先将生物质溶解,再将其与石墨烯均匀混合,突破常规生物质直接高温煅烧获得硬碳的方法,能有效地提高复合效果,进而提升材料作为钠离子电池负极的性能。本发明所述的负极材料中石墨烯未发生明显的团聚,且与生物质衍生硬碳结合良好;在1A/g的电流密度下,循环1000次后,比容量仍可保持在210.2mAh/g,所以其具有较高的比电容以及良好的循环性能。