-
公开(公告)号:CN114998893B
公开(公告)日:2023-05-02
申请号:CN202210665138.8
申请日:2022-06-14
Applicant: 江南大学
IPC: G06V20/68 , G06V10/40 , G06V10/77 , G06V10/82 , G06N3/0442 , G06N3/048 , G06N3/0895
Abstract: 本发明涉及一种基于半监督迁移学习的食品品质无损检测模型构建方法,包括:获取只含有标签样本的源域数据集和含有第一预设比例的样本为有标签样本、第二预设比例的样本为无标签样本的目标域数据集,使用源域数据集训练食品品质检测模型,保留食品品质检测模型的通用层Z,截去Z后的品质检测层A和输出层B;在Z后接入重构区C并使用无监督学习训练C得到训练完成的重构区C’,在C’后接入输出层D并使用有监督学习训练D得到训练完成的输出层D’,得到迁移完成的食品品质检测模型Z+C’+D’。本发明可以在目标域样本集只有少量有标签样本的情况下实现模型的迁移、迁移后的模型可以实现对食品品质的无损检测。
-
公开(公告)号:CN114998893A
公开(公告)日:2022-09-02
申请号:CN202210665138.8
申请日:2022-06-14
Applicant: 江南大学
Abstract: 本发明涉及一种基于半监督迁移学习的食品品质无损检测模型构建方法,包括:获取只含有标签样本的源域数据集和含有第一预设比例的样本为有标签样本、第二预设比例的样本为无标签样本的目标域数据集,使用源域数据集训练食品品质检测模型,保留食品品质检测模型的通用层Z,截去Z后的品质检测层A和输出层B;在Z后接入重构区C并使用无监督学习训练C得到训练完成的重构区C’,在C’后接入输出层D并使用有监督学习训练D得到训练完成的输出层D’,得到迁移完成的食品品质检测模型Z+C’+D’。本发明可以在目标域样本集只有少量有标签样本的情况下实现模型的迁移、迁移后的模型可以实现对食品品质的无损检测。
-
公开(公告)号:CN113433081B
公开(公告)日:2022-05-24
申请号:CN202110764668.3
申请日:2021-07-06
Applicant: 江南大学
Abstract: 本发明涉及一种基于动态神经网络的果蔬干燥过程中品质检测方法及系统,包括:采集并保存待检测的果蔬切片样本集在多光谱多个波段下的多光谱图形集;对所述多光谱图形集中的光谱图形进行预处理;对处理过后的图像进行阈值分割,并将每个波段下分割后感兴趣区域的像素点按照顺序重构为一维序列;对样本集中每个样本多个波段下的一维序列作补零处理,并重建二维图像,将重建二维图像集中的数据维度增加一维;将增加一维后的二维图像集按照多个波段的顺序依次输入动态神经网络进行训练,将训练后的预测值与实际值作对比,得出衡量预测能力的指标并依照效果来调整网络的结构和训练的次数。本发明有利于提高对于指标的预测能力,有效提高检测准确度。
-
公开(公告)号:CN113433081A
公开(公告)日:2021-09-24
申请号:CN202110764668.3
申请日:2021-07-06
Applicant: 江南大学
Abstract: 本发明涉及一种基于动态神经网络的果蔬干燥过程中品质检测方法及系统,包括:采集并保存待检测的果蔬切片样本集在多光谱多个波段下的多光谱图形集;对所述多光谱图形集中的光谱图形进行预处理;对处理过后的图像进行阈值分割,并将每个波段下分割后感兴趣区域的像素点按照顺序重构为一维序列;对样本集中每个样本多个波段下的一维序列作补零处理,并重建二维图像,将重建二维图像集中的数据维度增加一维;将增加一维后的二维图像集按照多个波段的顺序依次输入动态神经网络进行训练,将训练后的预测值与实际值作对比,得出衡量预测能力的指标并依照效果来调整网络的结构和训练的次数。本发明有利于提高对于指标的预测能力,有效提高检测准确度。
-
-
-