-
公开(公告)号:CN111160620A
公开(公告)日:2020-05-15
申请号:CN201911247976.8
申请日:2019-12-06
申请人: 江苏方天电力技术有限公司 , 东南大学
摘要: 本发明公开了一种基于端到端记忆网络的短期风电功率预测方法,包括如下步骤:采集风电场数据;将采集的风电场数据划分为历史数据、被预测多节点天气数据和功率数据,并对历史数据和被预测多节点天气数据进行归一化处理;利用多头自注意力机制模型对历史数据进行编码,将编码后的特征向量存入端到端记忆网络的记忆池;采用注意力机制对被预测多节点天气数据进行编码,并将编码结果作为端到端记忆网络的输入向量;将功率数据作为端到端记忆网络的输出向量进行端到端记忆网络的训练;使用训练好的端到端记忆网络对风机输出功率进行预测。本发明方法相比以往短期风电功率预测方法,能够关注到历史数据中隐含的信息,具有更高的预测精度和稳定性。
-
公开(公告)号:CN112785029B
公开(公告)日:2022-07-08
申请号:CN202011221935.4
申请日:2020-11-05
申请人: 江苏方天电力技术有限公司 , 东南大学
摘要: 本发明公开了一种基于深度聚类模型的充电站用电量预测方法,包括:充电站数据的增强及预处理;基于深度聚类模型的特征映射,充电站所属簇的确定;基于最近邻算法的充电站电量预测。本发明方法使用深度神经网络同时学习充电站数据的特征表示和簇的分配,通过将数据映射到隐层特征空间,迭代地优化聚类目标和重构损失,减少了误差传播的可能性;进一步使用最近邻算法对充电站用电量进行预测。本方法相比于以往的充电站用电预测方法,能够挖掘到数据的隐含特征,缩小搜索空间,具有更高的预测精度。
-
公开(公告)号:CN111160620B
公开(公告)日:2022-06-17
申请号:CN201911247976.8
申请日:2019-12-06
申请人: 江苏方天电力技术有限公司 , 东南大学
摘要: 本发明公开了一种基于端到端记忆网络的短期风电功率预测方法,包括如下步骤:采集风电场数据;将采集的风电场数据划分为历史数据、被预测多节点天气数据和功率数据,并对历史数据和被预测多节点天气数据进行归一化处理;利用多头自注意力机制模型对历史数据进行编码,将编码后的特征向量存入端到端记忆网络的记忆池;采用注意力机制对被预测多节点天气数据进行编码,并将编码结果作为端到端记忆网络的输入向量;将功率数据作为端到端记忆网络的输出向量进行端到端记忆网络的训练;使用训练好的端到端记忆网络对风机输出功率进行预测。本发明方法相比以往短期风电功率预测方法,能够关注到历史数据中隐含的信息,具有更高的预测精度和稳定性。
-
公开(公告)号:CN112785029A
公开(公告)日:2021-05-11
申请号:CN202011221935.4
申请日:2020-11-05
申请人: 江苏方天电力技术有限公司 , 东南大学
摘要: 本发明公开了一种基于深度聚类模型的充电站用电量预测方法,包括:充电站数据的增强及预处理;基于深度聚类模型的特征映射,充电站所属簇的确定;基于最近邻算法的充电站电量预测。本发明方法使用深度神经网络同时学习充电站数据的特征表示和簇的分配,通过将数据映射到隐层特征空间,迭代地优化聚类目标和重构损失,减少了误差传播的可能性;进一步使用最近邻算法对充电站用电量进行预测。本方法相比于以往的充电站用电预测方法,能够挖掘到数据的隐含特征,缩小搜索空间,具有更高的预测精度。
-
公开(公告)号:CN113837384A
公开(公告)日:2021-12-24
申请号:CN202110955878.0
申请日:2021-08-19
申请人: 东南大学
摘要: 本发明公开了一种基于深度交互推理模型的事实检测方法,包括:使用BERT模型对证据和陈述分别进行编码;通过多头映射机制抽取证据的语义信息,并将其保存到记忆池中;计算陈述与每条证据之间的语义关系;基于注意力机制获取证据集合的整体表示,并计算陈述和证据整体表示之间的推理关系;将推理结构升级为多层结构,对推理关系进行迭代式地更新;利用更新后的证据表示对陈述的真实性进行判断。本发明方法中的多头映射机制能够从不同角度抽取证据的语义信息;记忆池结构赋予模型处理“多跳”问题的能力;多层推理结构能够深层次挖掘证据和陈述之间的推理关系。相比于其他方法,本发明方法在UKP‑Snopes数据集上具有更好的预测效果。
-
-
-
-