基于机器学习的中间件故障预警方法和系统

    公开(公告)号:CN111027615B

    公开(公告)日:2022-06-10

    申请号:CN201911237337.3

    申请日:2019-12-05

    摘要: 本发明公开了基于机器学习的中间件故障预警方法和系统,该方法包括如下步骤:(1)实时采集电力信息系统中间件的数据;(2)进行安全性验证;(3)对电力信息系统中间件的历史日志数据和实时日志数据进行预处理;(4)以预处理后的中间件的历史日志数据和实时日志数据作为输入,对基于机器学习的分类算法进行训练,形成故障分类器;(5)通过基于机器学习的回归算法分析中间件指标值与中间件故障的关系,拟合故障特征函数,并基于故障特征函数和故障分类器进行故障预警的实时判断。本发明有效克服了电力信息系统故障诊断时效差、准确度低、无法提前预警等问题,实现了基于电力信息系统中间件的实时故障预警,可保障系统安全、高效运行。

    基于机器学习的中间件故障预警方法和系统

    公开(公告)号:CN111027615A

    公开(公告)日:2020-04-17

    申请号:CN201911237337.3

    申请日:2019-12-05

    摘要: 本发明公开了基于机器学习的中间件故障预警方法和系统,该方法包括如下步骤:(1)实时采集电力信息系统中间件的数据;(2)进行安全性验证;(3)对电力信息系统中间件的历史日志数据和实时日志数据进行预处理;(4)以预处理后的中间件的历史日志数据和实时日志数据作为输入,对基于机器学习的分类算法进行训练,形成故障分类器;(5)通过基于机器学习的回归算法分析中间件指标值与中间件故障的关系,拟合故障特征函数,并基于故障特征函数和故障分类器进行故障预警的实时判断。本发明有效克服了电力信息系统故障诊断时效差、准确度低、无法提前预警等问题,实现了基于电力信息系统中间件的实时故障预警,可保障系统安全、高效运行。