一种高炉死铁层深度确定方法

    公开(公告)号:CN112538552B

    公开(公告)日:2022-03-15

    申请号:CN202011313616.6

    申请日:2020-11-20

    IPC分类号: C21B5/00 G06F17/10

    摘要: 本发明公开了一种高炉死铁层深度确定方法,属于高炉炼铁技术领域。方法如下:选定高炉,确定块状带与软熔带总体积ΔV;计算块状带与软熔带的总重力G1;计算煤气对死料柱浮力Fg;计算炉壁摩擦力Fb;建立渣层厚度hs和炉缸渣层对死料柱浮力Fs的关系式;建立铁水高度hi和铁层对死料柱浮力Fi的关系式;建立铁水高度hi和滴落带与死料柱的焦炭总重力G2的关系式;建立G1、G2、Fg、Fs、Fb和铁Fi的关系式,导出铁水高度hi计算式;建立高炉排进渣铁的条件下死铁层深度h死计算模型,确定死铁层深度。本发明能够根据不同立级高炉的设计参数、工作条件,来确定适宜的死铁层深度,解决了现有的高炉死铁层深度仅能根据经验确定、无法有效适配对应高炉条件的问题。

    一种高炉风口保护装置
    5.
    发明授权

    公开(公告)号:CN112176141B

    公开(公告)日:2022-05-06

    申请号:CN202011293551.3

    申请日:2020-11-18

    IPC分类号: C21B7/16

    摘要: 本发明公开了一种高炉风口保护装置,属于高炉设备技术领域。所述高炉风口包括风口组合砖、风口缝隙和风口冷却壁,所述风口缝隙为空腔结构,设于所述风口组合砖和所述风口冷却壁之间,所述风口缝隙的长度为a,深度为b,高度为c,所述保护装置设于所述风口缝隙内,所述保护装置包括导热装置和填充装置,所述导热装置的长度为(a‑5 mm)~a,深度为(b‑3 mm)~b,高度为(c/2‑5 mm)~c/2,所述导热装置的导热系数大于等于所述风口冷却壁的导热系数;所述填充装置包覆所述导热装置并与所述风口缝隙的空腔贴合。该装置能够减少风口部位的破损,提高高炉风口的冷却速度,同时延长风口寿命。

    一种高炉风口保护装置
    7.
    发明公开

    公开(公告)号:CN112176141A

    公开(公告)日:2021-01-05

    申请号:CN202011293551.3

    申请日:2020-11-18

    IPC分类号: C21B7/16

    摘要: 本发明公开了一种高炉风口保护装置,属于高炉设备技术领域。所述高炉风口包括风口组合砖、风口缝隙和风口冷却壁,所述风口缝隙为空腔结构,设于所述风口组合砖和所述风口冷却壁之间,所述风口缝隙的长度为a,深度为b,高度为c,所述保护装置设于所述风口缝隙内,所述保护装置包括导热装置和填充装置,所述导热装置的长度为(a‑5 mm)~a,深度为(b‑3 mm)~b,高度为(c/2‑5 mm)~c/2,所述导热装置的导热系数大于等于所述风口冷却壁的导热系数;所述填充装置包覆所述导热装置并与所述风口缝隙的空腔贴合。该装置能够减少风口部位的破损,提高高炉风口的冷却速度,同时延长风口寿命。

    一种高炉死铁层深度确定方法

    公开(公告)号:CN112538552A

    公开(公告)日:2021-03-23

    申请号:CN202011313616.6

    申请日:2020-11-20

    IPC分类号: C21B5/00 G06F17/10

    摘要: 本发明公开了一种高炉死铁层深度确定方法,属于高炉炼铁技术领域。方法如下:选定高炉,确定块状带与软熔带总体积ΔV;计算块状带与软熔带的总重力G1;计算煤气对死料柱浮力Fg;计算炉壁摩擦力Fb;建立渣层厚度hs和炉缸渣层对死料柱浮力Fs的关系式;建立铁水高度hi和铁层对死料柱浮力Fi的关系式;建立铁水高度hi和滴落带与死料柱的焦炭总重力G2的关系式;建立G1、G2、Fg、Fs、Fb和铁Fi的关系式,导出铁水高度hi计算式;建立高炉排进渣铁的条件下死铁层深度h死计算模型,确定死铁层深度。本发明能够根据不同立级高炉的设计参数、工作条件,来确定适宜的死铁层深度,解决了现有的高炉死铁层深度仅能根据经验确定、无法有效适配对应高炉条件的问题。