一种聚吡咙/聚醚砜/碳纳米管三元复合材料的制备方法

    公开(公告)号:CN105714411A

    公开(公告)日:2016-06-29

    申请号:CN201510648935.5

    申请日:2015-10-09

    Abstract: 本发明公开了一种聚吡咙/聚醚砜/碳纳米管三元复合材料的制备方法。该复合材料是按照下述步骤制得:(1)将四酸单体和四胺单体溶解于溶剂中,制得聚吡咙前驱体溶液;(2)向上述聚吡咙前驱体溶液中,加入聚醚砜和氧化碳纳米管,形成纺丝混合溶液,然后通过静电纺丝法制备复合纳米纤维材料;(3)将上述复合纳米纤维材料进行真空干燥后,进行热处理,得到聚吡咙/聚醚砜/碳纳米管三元复合材料,将三元复合材料浸入到多聚磷酸中,进行交联处理。本发明提供的聚吡咙/聚醚砜/碳纳米管三元复合材料,既能够解决聚吡咙难以进行静电纺丝法制备,又增强了复合材料的耐高温、抗氧化、耐腐蚀以及强度等性能。

    一种基于分子组装的聚吡咙/聚酰亚胺复合纤维的制备方法及其制品

    公开(公告)号:CN105714410A

    公开(公告)日:2016-06-29

    申请号:CN201510648062.8

    申请日:2015-10-09

    Abstract: 本发明公开了一种聚吡咙/聚酰亚胺复合纤维的制备方法。该复合材料是按照以下步骤制得:(1)提供至少包括四元酸和四元胺的羧酸铵盐溶液,制得聚吡咙前驱体溶液;(2)合成聚酰胺酸;(3)在上述聚吡咙前驱体溶液中加入聚酰胺酸,制得纺丝溶液,静电纺丝制得复合纳米纤维前驱体;(4)对上述复合纳米纤维前驱体高温热处理,制得聚吡咙/聚酰亚胺复合纤维。发明的方法具有纺丝溶液混合更均匀,不仅改善了聚吡咙难以电纺丝的问题,而且改善了超支化型聚酰亚胺力学性能不高的问题,同时最终制得的聚吡咙/聚酰亚胺复合纤维取向度更高,直径均匀,强度更高。

    一种基于分子组装的磺化聚酰亚胺/聚吡咙复合质子交换膜的制备方法

    公开(公告)号:CN105713222A

    公开(公告)日:2016-06-29

    申请号:CN201510632554.8

    申请日:2015-09-29

    Abstract: 本发明公开了一种基于分子组装的磺化聚酰亚胺/聚吡咙复合质子交换膜的制备方法,包含以下步骤:将四胺和四酸溶于有机溶剂形成羧酸铵盐溶液,将其与部分磺化聚酰胺酸溶液混合,获得纺丝混合液;对纺丝混合液进行静电纺丝获得纳米纤维膜前驱体;对纳米纤维膜前驱体进行热处理获得纳米纤维膜;将纳米纤维膜进行质子化处理;在多聚磷酸的存在下让纤维膜交联;用纺丝混合液对纤维膜中的缝隙进行填充,再进行二次热处理,二次质子化,获得磺化聚酰亚胺/聚吡咙复合质子交换膜。使用本发明方法制备的复合质子交换膜不仅具有较高的质子导电率、良好的机械强度,还具有优异的抗自由基氧化性。

    氮化硼颗粒填充的复合多曲孔膜材料及其制备方法和应用

    公开(公告)号:CN105206783A

    公开(公告)日:2015-12-30

    申请号:CN201510578303.6

    申请日:2015-09-11

    CPC classification number: H01M2/166 H01M2/145

    Abstract: 本发明公开了一种纳米复合多曲孔膜材料,它以聚酰亚胺(PI)纳米纤维非织造布为基材,基材孔隙中填充有纳米氮化硼颗粒;所述的纳米氮化硼颗粒,其直径在50-100nm之间,占纳米复合多曲孔膜材料总重量的30-60%;所述的PI纳米纤维非织造布厚度在9-38μm之间,孔隙率在60-80%之间。本发明提供的纳米复合多曲孔膜材料耐高温、抗热收缩、耐高电压和高电流冲击,抗机械撞击,适合于用作安全电池隔膜和安全超级电容器隔膜,制造各种高容量和高动力锂电池或超级电容器。本发明还提供所述的纳米复合多曲孔膜材料的制备方法,及其作为电池隔膜的应用。

    一种基于分子组装的磺化聚酰亚胺/聚吡咙复合质子交换膜的制备方法

    公开(公告)号:CN105713222B

    公开(公告)日:2018-12-21

    申请号:CN201510632554.8

    申请日:2015-09-29

    Abstract: 本发明公开了一种基于分子组装的磺化聚酰亚胺/聚吡咙复合质子交换膜的制备方法,包含以下步骤:将四胺和四酸溶于有机溶剂形成羧酸铵盐溶液,将其与部分磺化聚酰胺酸溶液混合,获得纺丝混合液;对纺丝混合液进行静电纺丝获得纳米纤维膜前驱体;对纳米纤维膜前驱体进行热处理获得纳米纤维膜;将纳米纤维膜进行质子化处理;在多聚磷酸的存在下让纤维膜交联;用纺丝混合液对纤维膜中的缝隙进行填充,再进行二次热处理,二次质子化,获得磺化聚酰亚胺/聚吡咙复合质子交换膜。使用本发明方法制备的复合质子交换膜不仅具有较高的质子导电率、良好的机械强度,还具有优异的抗自由基氧化性。

Patent Agency Ranking