-
公开(公告)号:CN112950477B
公开(公告)日:2023-08-22
申请号:CN202110277184.6
申请日:2021-03-15
申请人: 河南大学
摘要: 本发明公开了一种基于双路径处理的高分辨率显著性目标检测方法,包括:图像处理,输入的高分辨率图像首先经过包含深度可分离卷积的HeadBottleneck模块,对原始高分辨率图像预处理降低其参数量;较大感受野特征提取,全局上下文路径首先经过基于ResNet‑50改进的骨干网络R‑ResNet来提取具有较大的感受野的特征;多尺度特征提取,R‑ResNet骨干网络得到的特征被送入多尺度特征提取和增强模块;显著图生成,空间细节保持分支通过边缘信息引导模块提取详细的边缘信息,然后与全局上下文分支得到的特征互补融合得到最终的显著图结果。本发明能够实现对高分辨率图像中的显著性目标进行精确检测并快速分割,最终输出目标显著图,可以为高分辨率显著性目标检测提供一种解决方法。
-
公开(公告)号:CN110883776B
公开(公告)日:2021-04-23
申请号:CN201911198660.4
申请日:2019-11-29
申请人: 河南大学
摘要: 本发明涉及一种快速搜索机制下改进DQN的机器人路径规划算法,包括如下步骤:S1、设置算法中所需的参数;S2、根据三维地形环境的坡度特征和机器人运动几何学特性,建立一个二维的栅格地图用来模拟环境;S3、设计快速搜索机制;S4、建立机器人的动作集;S5、设计一个连续的报酬函数;S6、机器人通过训练输出一条最佳路径;本发明提供了一种快速搜索机制下改进DQN的机器人路径规划算法,改善了Deep Q_Learning算法存在的环境利用率低、搜索效率低等问题,能够使机器人在未知环境下快速搜索出最佳路径。
-
公开(公告)号:CN112329800A
公开(公告)日:2021-02-05
申请号:CN202011408397.X
申请日:2020-12-03
申请人: 河南大学
摘要: 本发明提供了一种基于全局信息引导残差注意力的显著性目标检测方法,通过将图像输入到主干网络提取特征;设计全局信息互补模块获取丰富的全局信息并引导整体网络;通过多尺度并行卷积提取多尺度信息;通过特征融合模块融合全局信息和多尺度信息;通过残差注意力模块增强显著性目标特征,经过多级监督最终输出显著性结果。本发明不仅能够从ResNet‑50主干网络提取图像特征,并且提出的全局信息互补模块能够将主干网络中低层次细节信息与高层次丰富语义信息融合到一起,且设计的残差注意力模块能够将图像特征中更大的权重集中在前景显著性区域中,过滤掉无用的背景信息,与现有的显著性检测方法相比具有良好的性能。
-
公开(公告)号:CN112950477A
公开(公告)日:2021-06-11
申请号:CN202110277184.6
申请日:2021-03-15
申请人: 河南大学
摘要: 本发明公开了一种基于双路径处理的高分辨率显著性目标检测方法,包括:图像处理,输入的高分辨率图像首先经过包含深度可分离卷积的HeadBottleneck模块,对原始高分辨率图像预处理降低其参数量;较大感受野特征提取,全局上下文路径首先经过基于ResNet‑50改进的骨干网络R‑ResNet来提取具有较大的感受野的特征;多尺度特征提取,R‑ResNet骨干网络得到的特征被送入多尺度特征提取和增强模块;显著图生成,空间细节保持分支通过边缘信息引导模块提取详细的边缘信息,然后与全局上下文分支得到的特征互补融合得到最终的显著图结果。本发明能够实现对高分辨率图像中的显著性目标进行精确检测并快速分割,最终输出目标显著图,可以为高分辨率显著性目标检测提供一种解决方法。
-
公开(公告)号:CN112329800B
公开(公告)日:2022-09-23
申请号:CN202011408397.X
申请日:2020-12-03
申请人: 河南大学
摘要: 本发明提供了一种基于全局信息引导残差注意力的显著性目标检测方法,通过将图像输入到主干网络提取特征;设计全局信息互补模块获取丰富的全局信息并引导整体网络;通过多尺度并行卷积提取多尺度信息;通过特征融合模块融合全局信息和多尺度信息;通过残差注意力模块增强显著性目标特征,经过多级监督最终输出显著性结果。本发明不仅能够从ResNet‑50主干网络提取图像特征,并且提出的全局信息互补模块能够将主干网络中低层次细节信息与高层次丰富语义信息融合到一起,且设计的残差注意力模块能够将图像特征中更大的权重集中在前景显著性区域中,过滤掉无用的背景信息,与现有的显著性检测方法相比具有良好的性能。
-
公开(公告)号:CN110883776A
公开(公告)日:2020-03-17
申请号:CN201911198660.4
申请日:2019-11-29
申请人: 河南大学
摘要: 本发明涉及一种快速搜索机制下改进DQN的机器人路径规划算法,包括如下步骤:S1、设置算法中所需的参数;S2、根据三维地形环境的坡度特征和机器人运动几何学特性,建立一个二维的栅格地图用来模拟环境;S3、设计快速搜索机制;S4、建立机器人的动作集;S5、设计一个连续的报酬函数;S6、机器人通过训练输出一条最佳路径;本发明提供了一种快速搜索机制下改进DQN的机器人路径规划算法,改善了Deep Q_Learning算法存在的环境利用率低、搜索效率低等问题,能够使机器人在未知环境下快速搜索出最佳路径。
-
-
-
-
-