基于叶绿素荧光成像及DB-YOLOv7的绿豆叶斑病检测方法

    公开(公告)号:CN116342487A

    公开(公告)日:2023-06-27

    申请号:CN202310149978.3

    申请日:2023-02-22

    摘要: 本发明公开了一种基于叶绿素荧光成像及DB‑YOLOv7的绿豆叶斑病检测方法,预先获取绿豆叶斑病图像,通过人工标注制作绿豆叶斑病数据集,并划分为训练集、验证集和测试集;构建基于DB‑YOLOv7的绿豆叶斑病检测模型;在YOLOv7模型的基础上重构了SPPCSPC模块,使其能够更有效的捕捉有效信息,增强对小病斑的提取能力;其次引入了GFPN模块并在其基础上进行了改进,缩短了高层级与低层级之间的距离,解决了路径过长导致的特征丢失问题;另外引入了CA注意力机制模块,提高了模型的鲁棒性;基于训练集和验证集对DB‑YOLOv7模型进行训练和评价;将所述测试集图像输入至训练后的DB‑YOLOv7模型进行识别,实现绿豆叶斑病检测。本发明能够有效地提高绿豆叶斑病检测的精度,具有广阔的应用前景。