-
公开(公告)号:CN116361551A
公开(公告)日:2023-06-30
申请号:CN202310256862.X
申请日:2023-03-08
申请人: 清华大学 , 北京达佳互联信息技术有限公司
IPC分类号: G06F16/9535 , G06F18/214
摘要: 本公开提供了一种内容项推荐模型的训练方法、内容项推荐方法及装置,属于计算机技术领域。方法包括:基于样本训练数据,对基于有标签的样本预训练数据预训练得到的内容项推荐模型进行无监督训练,得到所述样本训练数据的反向加权损失;基于所述反向加权损失的正向梯度和反向梯度,对所述内容项推荐模型分别进行更新,得到第一临时模型和第二临时模型;基于样本测试数据和所述样本测试数据的标签信息,对所述内容项推荐模型、所述第一临时模型以及所述第二临时模型进行训练,得到目标推荐模型。该方法能够提高内容项推荐模型的推荐内容项的准确性,提升内容项推荐模型的鲁棒性。
-
公开(公告)号:CN116450860A
公开(公告)日:2023-07-18
申请号:CN202310220409.3
申请日:2023-03-08
申请人: 清华大学 , 北京达佳互联信息技术有限公司
IPC分类号: G06F16/435 , H04N21/2343 , H04N21/4402 , H04N21/466 , G06F18/214 , G06F18/25
摘要: 本公开关于一种媒体资源推荐方法、推荐模型的训练方法及相关设备,该方法通过推荐模型,对媒体资源序列和操作反馈序列进行融合编码处理,得到初始媒体资源特征;初始媒体资源特征包括多个媒体资源子特征,每个所述媒体资源子特征包含对应的正反馈标签或负反馈标签;以及对初始媒体资源特征进行基于所述媒体资源序列对应的正反馈标签和负反馈标签相混合的编码处理,得到目标媒体资源特征;对目标媒体资源特征进行基于正反馈维度的反馈拆分处理,得到正反馈序列表征;以及基于候选资源的推荐结果确定推荐资源,从而提高了媒体资源的推荐准确率。
-
公开(公告)号:CN115203543A
公开(公告)日:2022-10-18
申请号:CN202210778190.4
申请日:2022-06-29
申请人: 清华大学 , 北京达佳互联信息技术有限公司
IPC分类号: G06F16/9535 , G06F16/9536 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本公开关于一种内容推荐方法、内容推荐模型的训练方法及装置,所述方法包括:获取待推荐对象在目标场景下的历史交互内容序列和候选内容;通过内容推荐模型分别对历史交互内容序列和候选内容进行特征提取,得到历史交互内容和候选内容的场景特征和全局特征;对历史交互内容的场景特征和全局特征分别进行编码,得到历史交互内容序列的场景序列特征和全局序列特征;对历史交互内容序列的场景序列特征进行特征提取,得到待推荐对象的群体特征;根据群体特征、场景序列特征、全局序列特征及候选内容的场景特征和全局特征得到推荐指标信息;基于推荐指标信息,从候选内容中确定出针对待推荐对象的目标推荐内容。该方法可提高跨场景的推荐内容的质量。
-
-