基于信号分解和周期特性的网络流量特征指标预测方法

    公开(公告)号:CN110740063A

    公开(公告)日:2020-01-31

    申请号:CN201911022926.X

    申请日:2019-10-25

    Abstract: 本发明公开了一种基于信号分解和周期特性的网络流量特征指标预测方法,涉及计算机网络技术领域。本发明使用EMD信号分解算法,对网络流量特征指标时间序列进行经验模态分解,得到多个分量和一个残余项;计算各个分量的周期,利用快速傅里叶变换计算每个分量各自的周期;各分量的单独预测,根据每个分量的周期,对分量中的周期点进行重新采样,形成新的采样时间序列,并针对该采样时间序列开展回归预测,最后使用回归方法对残余项进行预测;对各分量的预测输出以及残余项预测输出进行逐项求和,得到最终预测结果。本发明组合应用数字信号处理领域的信号分解技术,以及信号周期分析、分量回归预测等技术,实现对网络流量特征指标时间序列的预测。

    基于信号分解和周期特性的网络流量特征指标预测方法

    公开(公告)号:CN110740063B

    公开(公告)日:2021-07-06

    申请号:CN201911022926.X

    申请日:2019-10-25

    Abstract: 本发明公开了一种基于信号分解和周期特性的网络流量特征指标预测方法,涉及计算机网络技术领域。本发明使用EMD信号分解算法,对网络流量特征指标时间序列进行经验模态分解,得到多个分量和一个残余项;计算各个分量的周期,利用快速傅里叶变换计算每个分量各自的周期;各分量的单独预测,根据每个分量的周期,对分量中的周期点进行重新采样,形成新的采样时间序列,并针对该采样时间序列开展回归预测,最后使用回归方法对残余项进行预测;对各分量的预测输出以及残余项预测输出进行逐项求和,得到最终预测结果。本发明组合应用数字信号处理领域的信号分解技术,以及信号周期分析、分量回归预测等技术,实现对网络流量特征指标时间序列的预测。

Patent Agency Ranking