-
公开(公告)号:CN111987348B
公开(公告)日:2023-04-18
申请号:CN202010878415.4
申请日:2020-08-27
申请人: 电子科技大学
IPC分类号: H01M10/0562 , H01M10/058 , H01M10/42
摘要: 本发明属于固态电池技术领域,具体提供一种NASICON型固态电池的制备方法用以解决现有NASICON固态电解质(LiTi2PO4)存在的诸多问题、以及固态电池中界面接触问题。本发明首先,采用三价阳离子修饰LTP基体,得到固态电解质Li1.3M0.3Ti1.7(PO4)3、M=Fe and Cr(LFTP及LCTP),提升固态电解质的离子电导率,减少Li金属与电解质的副反应;其次,在传统磷酸铁锂正极中引入少量LFTP或LCTP,匹配改进涂覆工艺,有效改善正极与电解质界面接触性;最后,在装配固态电池时,以六氟磷酸锂滴加于电解质层上表面、以浸润界面,构筑过度界面;最终制备能够得到一种全[PO4]3‑骨架的固态电池,即磷酸盐正极、磷酸盐电解质、以及磷酸盐过渡界面,大幅提升固态电池的循环寿命。
-
公开(公告)号:CN113314700B
公开(公告)日:2023-04-07
申请号:CN202110509379.9
申请日:2021-05-11
申请人: 电子科技大学
摘要: 本发明属于锂离子电池的高镍正极材料及其制备技术领域,具体提供一种双重作用改性锂离子电池高镍正极材料及其制备方法,用以解决现有锂离子电池高镍正极材料电化学性能差与循环稳定性差(尤其是高温环境下)的缺点。本发明中锂离子电池高镍正极材料由主相与掺杂剂合成,主相为高镍镍钴二元正极材料、高镍NCA三元正极材料或高镍NCM三元正极材料,掺杂剂为偏磷酸锆;极少量的偏磷酸锆引入,通过高温固相法实现对高镍正极材料的体相掺杂和表面包覆双重协同改性,有效减小了高镍正极材料的阳离子混排、同时有效抑制界面副反应,使得改性后锂离子电池高镍正极材料具有优异的循环稳定性和倍率性能,能够满足较大倍率充放电需求。
-
公开(公告)号:CN112901445B
公开(公告)日:2022-12-16
申请号:CN202110198223.3
申请日:2021-02-22
申请人: 杭州电子科技大学
摘要: 本发明公开了基于电流磁效应的双线圈直线压缩机。本发明包括压缩机组件、交流电机组件、电磁铁组件、板弹簧组件。压缩机组件包括箱体、气缸和气缸座,箱体与气缸座围合成工作腔,活塞杆的一端固定安装有交流电机组件。交流电机组件包括支撑架和交流线圈。永磁体组件包括磁轭和电磁铁,磁轭整体为圆筒形,形成一端半开放的磁力腔,电磁铁设置在磁力腔内,交流线圈位于磁轭与电磁铁之间的间隙。两个结构相同的板弹簧组件固定安装在活塞杆上。本发明采用电磁铁作为定子来产生恒定磁场,加入铁芯提高了磁场的稳定性,且体积小巧,方便控制,节省成本,提高了压缩机效率。
-
公开(公告)号:CN115101729A
公开(公告)日:2022-09-23
申请号:CN202210676756.2
申请日:2022-06-15
申请人: 电子科技大学
摘要: 本发明属于锂金属电池负极材料技术领域,具体提供一种用于锂金属电池的复合金属锂负极材料及其制备方法,所述复合金属锂负极材料由金属锂负极及其表面的杂化Li3Bi/LiF人工固态电解质界面膜构成;其中,杂化Li3Bi/LiF人工固态电解质界面膜具有具有高离子扩散能力、高电阻率以及高杨氏模量的特性,进而使得复合金属锂负极材料能够有效解决现有金属锂负极材料存在的锂枝晶生长与电极体积膨胀等关键性问题,并且能够诱导实现金属锂在SEI/Li界面处的均匀锂沉积;另外,杂化Li3Bi/LiF人工固态电解质界面膜通过亚微米级多面体形貌BiF3分散后滴加在金属锂负极表面原位形成,具有分散性好、形成的人工固态电解质膜稳固、制备简单、成本低廉、合成一致性好等优点。
-
公开(公告)号:CN110176595B
公开(公告)日:2022-06-03
申请号:CN201910490654.X
申请日:2019-06-06
申请人: 电子科技大学
IPC分类号: H01M4/36 , H01M4/505 , H01M4/62 , H01M10/0525
摘要: 本发明属于锂离子电池领域,具体提供一种锂离子电池正极材料层状锰酸锂LiMnO2@C及其制备方法,用以克服锂离子电池正极材料层状锰酸锂(LiMnO2)难以制备,且电化学性能较差、结构极易发生相转变以及不能高倍率放电的缺点。本发明通过软化学法水热反应制备出六面体或立方体形貌的MnCO3,将其制备成为相同形貌的高活性的Mn2O3后与锂源进行低温固相反应,使得制备出的层状锰酸锂颗粒为六面体或立方体结构材料,该材料不仅结晶度高,而且在较低倍率下的电化学性能优异;同时,再通过碳包覆得到可在高倍率下放电的LiMnO2@C复合正极材料。
-
公开(公告)号:CN110190277B
公开(公告)日:2022-05-03
申请号:CN201910490407.X
申请日:2019-06-06
申请人: 电子科技大学
摘要: 本发明属于锂离子电池领域,具体提供一种锂离子电池正极材料LiMnO2@C及其制备方法,用以克服现有锂离子电池正极材料层状锰酸锂难以制备,且电化学性能较差、结构极易发生相转变、高倍率放电性能差的缺点。本发明通过液相反应制备出粒径为100~200nm的纳米级的MnCO3,将其烧制成为粒径为20~100nm的高活性的纳米Mn2O3后与锂源进行高温固相反应,使得制备出的层状锰酸锂颗粒直径小,仅为纳米尺度,结晶度好,且电化学性能优异;同时,碳包覆层状锰酸锂LiMnO2@C能够满足高能量密度、高功率密度和大倍率充放电需求。
-
公开(公告)号:CN111987348A
公开(公告)日:2020-11-24
申请号:CN202010878415.4
申请日:2020-08-27
申请人: 电子科技大学
IPC分类号: H01M10/0562 , H01M10/058 , H01M10/42
摘要: 本发明属于固态电池技术领域,具体提供一种NASICON型固态电池的制备方法用以解决现有NASICON固态电解质(LiTi2PO4)存在的诸多问题、以及固态电池中界面接触问题。本发明首先,采用三价阳离子修饰LTP基体,得到固态电解质Li1.3M0.3Ti1.7(PO4)3、M=Fe and Cr(LFTP及LCTP),提升固态电解质的离子电导率,减少Li金属与电解质的副反应;其次,在传统磷酸铁锂正极中引入少量LFTP或LCTP,匹配改进涂覆工艺,有效改善正极与电解质界面接触性;最后,在装配固态电池时,以六氟磷酸锂滴加于电解质层上表面、以浸润界面,构筑过度界面;最终制备能够得到一种全[PO4]3-骨架的固态电池,即磷酸盐正极、磷酸盐电解质、以及磷酸盐过渡界面,大幅提升固态电池的循环寿命。
-
公开(公告)号:CN110190277A
公开(公告)日:2019-08-30
申请号:CN201910490407.X
申请日:2019-06-06
申请人: 电子科技大学
摘要: 本发明属于锂离子电池领域,具体提供一种锂离子电池正极材料LiMnO2@C及其制备方法,用以克服现有锂离子电池正极材料层状锰酸锂难以制备,且电化学性能较差、结构极易发生相转变、高倍率放电性能差的缺点。本发明通过液相反应制备出粒径为100~200nm的纳米级的MnCO3,将其烧制成为粒径为20~100nm的高活性的纳米Mn2O3后与锂源进行高温固相反应,使得制备出的层状锰酸锂颗粒直径小,仅为纳米尺度,结晶度好,且电化学性能优异;同时,碳包覆层状锰酸锂LiMnO2@C能够满足高能量密度、高功率密度和大倍率充放电需求。
-
公开(公告)号:CN110176595A
公开(公告)日:2019-08-27
申请号:CN201910490654.X
申请日:2019-06-06
申请人: 电子科技大学
IPC分类号: H01M4/36 , H01M4/505 , H01M4/62 , H01M10/0525
摘要: 本发明属于锂离子电池领域,具体提供一种锂离子电池正极材料层状锰酸锂LiMnO2@C及其制备方法,用以克服锂离子电池正极材料层状锰酸锂(LiMnO2)难以制备,且电化学性能较差、结构极易发生相转变以及不能高倍率放电的缺点。本发明通过软化学法水热反应制备出六面体或立方体形貌的MnCO3,将其制备成为相同形貌的高活性的Mn2O3后与锂源进行低温固相反应,使得制备出的层状锰酸锂颗粒为六面体或立方体结构材料,该材料不仅结晶度高,而且在较低倍率下的电化学性能优异;同时,再通过碳包覆得到可在高倍率下放电的LiMnO2@C复合正极材料。
-
公开(公告)号:CN113707935B
公开(公告)日:2023-08-08
申请号:CN202110946301.3
申请日:2021-08-18
申请人: 电子科技大学
IPC分类号: H01M10/0565 , H01M10/0525 , C08F220/14 , C08F220/24
摘要: 本发明属于固态电解质的制备及应用领域,具体提供了一种含有多氟化基团的聚合物固态电解质材料及其制备方法。本发明所制备的聚合物固态电解质,离子电导率高,具有较宽的电化学活性窗口,可以与锂金属负极兼容,并可应用于多种正极材料制备的固态电池中。本发明制备的固体电解质主体,为甲基丙烯酸十二氟庚酯与甲基丙烯酸甲酯共聚得到,反应条件温和,易于实现;当聚合物主体共混锂盐及增塑剂后,制得的聚合物固态电解质化学稳定性好,在宽的温度范围内都表现出高的离子电导率,在30℃达到2.5×10‑4S·cm‑1以上,电化学窗口在4.7V以上。当采用LiFePO4及NCM811正极材料制备锂金属全固态电池时,初始放电比容量分别达到了163.2mAh g‑1和211.7mAh g‑1。
-
-
-
-
-
-
-
-
-