基于上下文优化与时间递归的视频显著性预测方法

    公开(公告)号:CN117176967B

    公开(公告)日:2024-03-01

    申请号:CN202311126117.X

    申请日:2023-09-03

    Abstract: 本发明公开了一种基于上下文优化与时间递归的视频显著性预测方法。所述方法包括如下步骤:获取待预测视频序列,输入到训练好的视频显著性预测网络中;采用Video swin transformer主干网络的编码器,提取显著性特征;通过上下文优化模块,增强该特征的感受野和表现能力;并进一步通过显著性传递机制来利用先前帧的显著性信息以促进当前帧的预测;将增强后的特征传入解码器中,进行求和与上采样,恢复至原始帧尺寸,便可得到最终的显著性图。所述方法结构简单有效,提高了视频显著性区域预测精度,在精度和推理时间上均有明显优势。

    基于上下文优化与时间递归的视频显著性预测方法

    公开(公告)号:CN117176967A

    公开(公告)日:2023-12-05

    申请号:CN202311126117.X

    申请日:2023-09-03

    Abstract: 本发明公开了一种基于上下文优化与时间递归的视频显著性预测方法。所述方法包括如下步骤:获取待预测视频序列,输入到训练好的视频显著性预测网络中;采用Video swin transformer主干网络的编码器,提取显著性特征;通过上下文优化模块,增强该特征的感受野和表现能力;并进一步通过显著性传递机制来利用先前帧的显著性信息以促进当前帧的预测;将增强后的特征传入解码器中,进行求和与上采样,恢复至原始帧尺寸,便可得到最终的显著性图。所述方法结构简单有效,提高了视频显著性区域预测精度,在精度和推理时间上均有明显优势。

Patent Agency Ranking