融合数据缺失数据和图像的三模型综合决策情绪预测方法

    公开(公告)号:CN111862068B

    公开(公告)日:2022-09-13

    申请号:CN202010739084.6

    申请日:2020-07-28

    Applicant: 福州大学

    Abstract: 本发明涉及一种融合数据缺失数据和图像的三模型综合决策情绪预测方法,包括以下步骤:步骤S1:获取心电图文件并对其进行图像预处理,得到二值化心电图;步骤S2:根据得到的二值化心电图,以列扫描方式与前者基准结合转换图像信息为标准心电数据;步骤S3:将标准心电数据通过多维心电分析模型,提取心电特征;步骤S4:分别构建特征权重分析模型的情绪预测模型、卷积神经网络和Missing_Value_Model模型,并根据标准心电数据和心电特征,得到三个预测结果;步骤S5:根据得到的三个预测结果,采用比较权重方法确定最终的预测结果。本发明提出融合三种格式数据的情感类型预测模型,实现提高预测准确度。

    融合数据缺失数据和图像的三模型综合决策情绪预测方法

    公开(公告)号:CN111862068A

    公开(公告)日:2020-10-30

    申请号:CN202010739084.6

    申请日:2020-07-28

    Applicant: 福州大学

    Abstract: 本发明涉及一种融合数据缺失数据和图像的三模型综合决策情绪预测方法,包括以下步骤:步骤S1:获取心电图文件并对其进行图像预处理,得到二值化心电图;步骤S2:根据得到的二值化心电图,以列扫描方式与前者基准结合转换图像信息为标准心电数据;步骤S3:将标准心电数据通过多维心电分析模型,提取心电特征;步骤S4:分别构建特征权重分析模型的情绪预测模型、卷积神经网络和Missing_Value_Model模型,并根据标准心电数据和心电特征,得到三个预测结果;步骤S5:根据得到的三个预测结果,采用比较权重方法确定最终的预测结果。本发明提出融合三种格式数据的情感类型预测模型,实现提高预测准确度。

Patent Agency Ranking