-
公开(公告)号:CN118014054B
公开(公告)日:2024-06-21
申请号:CN202410415056.7
申请日:2024-04-08
申请人: 西南科技大学
摘要: 本发明提供了一种基于平行重组网络的机械臂多任务强化学习方法,属于机械臂运动控制技术领域,该方法包括构建基于平行重组网络的机械臂多任务强化学习模型PR‑SAC,并进行训练;利用已训练的机械臂多任务强化学习模型PR‑SAC对机械臂进行控制,以实现通过单一网络对机械臂进行多任务控制。本发明通过重新组合网络层中层与层之间的关系,使得网络层中信息共享的更为充分,然后通过权重网络,自动选择每个任务的最佳路径,输出每个模块被选择的概率。因此,这种结构可以尽可能地获得多任务关系带来的好处。此外,在学习方法中加入了样本修正的模块,以避免当前策略与样本不符合造成策略更新出现问题。
-
公开(公告)号:CN118014054A
公开(公告)日:2024-05-10
申请号:CN202410415056.7
申请日:2024-04-08
申请人: 西南科技大学
摘要: 本发明提供了一种基于平行重组网络的机械臂多任务强化学习方法,属于机械臂运动控制技术领域,该方法包括构建基于平行重组网络的机械臂多任务强化学习模型PR‑SAC,并进行训练;利用已训练的机械臂多任务强化学习模型PR‑SAC对机械臂进行控制,以实现通过单一网络对机械臂进行多任务控制。本发明通过重新组合网络层中层与层之间的关系,使得网络层中信息共享的更为充分,然后通过权重网络,自动选择每个任务的最佳路径,输出每个模块被选择的概率。因此,这种结构可以尽可能地获得多任务关系带来的好处。此外,在学习方法中加入了样本修正的模块,以避免当前策略与样本不符合造成策略更新出现问题。
-