-
公开(公告)号:CN113268910B
公开(公告)日:2024-04-02
申请号:CN202110679425.X
申请日:2021-06-18
Applicant: 西安交通大学
IPC: G06F30/23 , G06F30/28 , G06F30/18 , G06F111/04 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 一种重力驱动的自然对流异型热沉结构拓扑优化方法,先建立重力驱动自然对流传热问题物理模型并简化,然后采用有限元方法对自然对流传热简化模型进行分析,以强化散热弱度、降低平均温度等提升结构散热性能的手段为优化目标,建立变密度法的优化模型,通过移动渐近线方法(MMA)对设计变量进行更新,将得到的设计变量分配到网格点上,得到网格点密度,通过构造水平集函数,实现散热翅片结构的显式边界表达;最后对优化后的散热翅片结构进行光滑圆整处理;本发明既能保证优化结构的形状和拓扑,又能实现优化结果的显式边界表达,有利于生产制造,得到能强化自然对流换热效果的优化结构,达到最佳冷却效果。
-
公开(公告)号:CN113343598A
公开(公告)日:2021-09-03
申请号:CN202110655524.4
申请日:2021-06-11
Applicant: 西安交通大学
IPC: G06F30/28 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 一种基于解耦模式的自然对流换热场景快速仿真系统,通过计算机实现,包括输入模块、分析及输出模块,仿真方法是首先导入待分析翅片结构模型;建立自然对流传热场景物理模型,再建立快速求解的自然对流换热场景降阶模型,然后采用高斯‑赛德尔迭代算法对自然对流换热场景降阶模型进行求解,解耦了温度场和压力场,当相邻迭代的温度场的改变量小于指定值或者循环次数大于循环最大次数时,迭代终止;最后得到了在自然对流传热场景下的温度场、速度场;本发明采用自然对流传热场景降阶模型并解耦了温度场和压力场,降低求解规模,减少计算机存储量,提高计算效率,得到适用于自然对流传热场景下的温度场、速度场。
-
公开(公告)号:CN113343598B
公开(公告)日:2023-07-18
申请号:CN202110655524.4
申请日:2021-06-11
Applicant: 西安交通大学
IPC: G06F30/28 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 一种基于解耦模式的自然对流换热场景快速仿真系统,通过计算机实现,包括输入模块、分析及输出模块,仿真方法是首先导入待分析翅片结构模型;建立自然对流传热场景物理模型,再建立快速求解的自然对流换热场景降阶模型,然后采用高斯‑赛德尔迭代算法对自然对流换热场景降阶模型进行求解,解耦了温度场和压力场,当相邻迭代的温度场的改变量小于指定值或者循环次数大于循环最大次数时,迭代终止;最后得到了在自然对流传热场景下的温度场、速度场;本发明采用自然对流传热场景降阶模型并解耦了温度场和压力场,降低求解规模,减少计算机存储量,提高计算效率,得到适用于自然对流传热场景下的温度场、速度场。
-
公开(公告)号:CN113268910A
公开(公告)日:2021-08-17
申请号:CN202110679425.X
申请日:2021-06-18
Applicant: 西安交通大学
IPC: G06F30/23 , G06F30/28 , G06F30/18 , G06F111/04 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 一种重力驱动的自然对流异型热沉结构拓扑优化方法,先建立重力驱动自然对流传热问题物理模型并简化,然后采用有限元方法对自然对流传热简化模型进行分析,以强化散热弱度、降低平均温度等提升结构散热性能的手段为优化目标,建立变密度法的优化模型,通过移动渐近线方法(MMA)对设计变量进行更新,将得到的设计变量分配到网格点上,得到网格点密度,通过构造水平集函数,实现散热翅片结构的显式边界表达;最后对优化后的散热翅片结构进行光滑圆整处理;本发明既能保证优化结构的形状和拓扑,又能实现优化结果的显式边界表达,有利于生产制造,得到能强化自然对流换热效果的优化结构,达到最佳冷却效果。
-
-
-