基于Transformer和对抗学习的跨模态行人重识别方法

    公开(公告)号:CN118736485A

    公开(公告)日:2024-10-01

    申请号:CN202410781684.7

    申请日:2024-06-18

    摘要: 一种基于Transformer和对抗学习的跨模态行人重识别方法,首先使用模态特定特征提取器分别从可见光图像和红外图像中提取特征。然后,通过跨模态特征对齐模块对提取得到的模态特定特征进行调整,以减少模态内和模态间的特征差异。接着,使用权重共享的共享特征提取器提取模态共享特征,并采用多尺度特征融合方法,利用Transformer通过注意力机制将模态共享特征的上下文信息补充到模态特定特征中,以弥补模态特定特征在全局语义上的不足。在对抗学习过程中,交替训练分类器和特征提取器,从而更好地提取模态不变特征。本发明有效减少了可见光和红外图像之间的模态差异,显著提升了跨模态行人重识别的精度和鲁棒性,适用于安防监控、智能交通等领域。