-
公开(公告)号:CN105894507B
公开(公告)日:2019-03-26
申请号:CN201610195336.7
申请日:2016-03-31
申请人: 西安电子科技大学
摘要: 本发明公开了一种基于图像信息量自然场景统计特征的图像质量评价方法,主要解决现有技术的对图像进行质量评价时不符合人类视觉主观感知特性的问题。其法包括:1)基于互信息理论将图像分割成不重叠的子块,建立图像亮度分布和图像子块间的联系;2)把图像转换为显著信息量、实际信息量和缠绕信息量;3)分别在三种信息量上进行亮度归一化系数特征,梯度模值特征和高斯‑拉普拉斯信号特征的提取;4)在上述特征的基础上,通过支持向量机的方法构建图量评价模型。实验结果表明,本发明与主观质量评价具有较高一致性,评价性能优于现有部分参考质量评价方法及部分全参考质量评价方法,可用于图像压缩、存储、传输中对图像的处理。
-
公开(公告)号:CN105894507A
公开(公告)日:2016-08-24
申请号:CN201610195336.7
申请日:2016-03-31
申请人: 西安电子科技大学
IPC分类号: G06T7/00
CPC分类号: G06T7/0002 , G06T2207/10024 , G06T2207/20081
摘要: 本发明公开了一种基于图像信息量自然场景统计特征的图像质量评价方法,主要解决现有技术的对图像进行质量评价时不符合人类视觉主观感知特性的问题。其法包括:1)基于互信息理论将图像分割成不重叠的子块,建立图像亮度分布和图像子块间的联系;2)把图像转换为显著信息量、实际信息量和缠绕信息量;3)分别在三种信息量上进行亮度归一化系数特征,梯度模值特征和高斯?拉普拉斯信号特征的提取;4)在上述特征的基础上,通过支持向量机的方法构建图量评价模型。实验结果表明,本发明与主观质量评价具有较高一致性,评价性能优于现有部分参考质量评价方法及部分全参考质量评价方法,可用于图像压缩、存储、传输中对图像的处理。
-