-
公开(公告)号:CN114495089B
公开(公告)日:2024-09-06
申请号:CN202111574943.1
申请日:2021-12-21
Applicant: 西安电子科技大学
IPC: G06V20/64 , G06V10/44 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明提出了一种基于多尺度异源特征自适应融合的三维目标检测方法,主要解决现有技术在单一传感器数据下对低分辨率三维目标检测精度低的问题,其方案为:建立训练、测试样本集;对点云进行体素初始化和关键点采样;构建三维体素特征编码模块编码体素特征;构建三维候选框估计模块估计三维候选框;构建图像特征编码网络编码图像特征;构建异源特征融合模块融合体素特征、图像特征和关键点特征;构建关键点权重估计模块对关键点作二分类;建立输出层,构建三维目标检测模型并对其训练;使用训练好的模型对点云中的三维目标进行检测。本发明改进了对低分辨率三维目标的表征能力,提高了三维目标的检测精度,可应用于机器人导航、三维建模、自动驾驶与虚拟现实。
-
公开(公告)号:CN115082674B
公开(公告)日:2024-09-06
申请号:CN202210816612.2
申请日:2022-07-12
Applicant: 西安电子科技大学
IPC: G06V10/25 , G06N3/0464 , G06N3/08 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明提出了一种基于注意力机制的多模态数据融合三维目标检测方法,实现步骤为:建立训练和测试样本集并对数据进行预处理;构建基于注意力机制的多模态数据融合三维目标检测网络;定义基于注意力机制的多模态数据融合三维目标检测网络的损失函数;对网络模型进行迭代训练;获取三维目标的检测结果。本发明利用特征学习网络,初步提取出一些候选区域,然后将候选区域中的点云数据、点的位置特征以及对应的图像信息进行了融合,充分利用了点云的规则化空间位置信息、点特征的精细化空间结构信息和图像的语义信息,减小了误差累积,进而提高了局部空间出现多个目标时的检测精度。
-
公开(公告)号:CN115082674A
公开(公告)日:2022-09-20
申请号:CN202210816612.2
申请日:2022-07-12
Applicant: 西安电子科技大学
Abstract: 本发明提出了一种基于注意力机制的多模态数据融合三维目标检测方法,实现步骤为:建立训练和测试样本集并对数据进行预处理;构建基于注意力机制的多模态数据融合三维目标检测网络;定义基于注意力机制的多模态数据融合三维目标检测网络的损失函数;对网络模型进行迭代训练;获取三维目标的检测结果。本发明利用特征学习网络,初步提取出一些候选区域,然后将候选区域中的点云数据、点的位置特征以及对应的图像信息进行了融合,充分利用了点云的规则化空间位置信息、点特征的精细化空间结构信息和图像的语义信息,减小了误差累积,进而提高了局部空间出现多个目标时的检测精度。
-
公开(公告)号:CN114495089A
公开(公告)日:2022-05-13
申请号:CN202111574943.1
申请日:2021-12-21
Applicant: 西安电子科技大学
Abstract: 本发明提出了一种基于多尺度异源特征自适应融合的三维目标检测方法,主要解决现有技术在单一传感器数据下对低分辨率三维目标检测精度低的问题,其方案为:建立训练、测试样本集;对点云进行体素初始化和关键点采样;构建三维体素特征编码模块编码体素特征;构建三维候选框估计模块估计三维候选框;构建图像特征编码网络编码图像特征;构建异源特征融合模块融合体素特征、图像特征和关键点特征;构建关键点权重估计模块对关键点作二分类;建立输出层,构建三维目标检测模型并对其训练;使用训练好的模型对点云中的三维目标进行检测。本发明改进了对低分辨率三维目标的表征能力,提高了三维目标的检测精度,可应用于机器人导航、三维建模、自动驾驶与虚拟现实。
-
-
-