基于显著图约束和X光头颅定位侧位图像的年龄估计方法

    公开(公告)号:CN112950631A

    公开(公告)日:2021-06-11

    申请号:CN202110410483.2

    申请日:2021-04-13

    IPC分类号: G06T7/00 G06N3/08 G06N3/04

    摘要: 本发明公开了一种基于显著图约束的头颅定位侧位片年龄估计方法,首次将显著图约束技术和X光头颅定位侧位片应用于年龄估计,解决了现有方法进行年龄估计准确性低并且不稳定的问题。其实现方案为:获取训练样本集、验证样本集和测试样本集;对图像进行填充、缩放和归一化处理;对自适应缩放卷积神经网络进行迭代训练;构建显著图约束训练样本集、显著图约束验证样本集和显著图约束测试样本集;获取自复制样本集和混合训练样本集;构建基于显著图约束的自适应缩放卷积神经网络;对基于显著图约束的自适应缩放卷积神经网络进行迭代训练;获取年龄估计结果;本发明提升了使用X光影像进行年龄估计的准确性和稳定性。

    基于多尺度相似指导网络的SAR舰船目标分割方法

    公开(公告)号:CN113610097B

    公开(公告)日:2023-05-05

    申请号:CN202110907055.0

    申请日:2021-08-09

    摘要: 本发明公开了一种基于多尺度相似指导网络的舰船目标分割方法,主要解决现有技术在小样本条件下对舰船目标分割结果较差的问题。其方案是:将现有的不同地区且包含不同成像方式的SAR图像舰船目标分割数据集构建原始数据集;将原始数据集构建为小样本分割训练数据集和小样本分割测试数据集;构建由支撑图像的特征提取支路、查询图像的特征提取支路、相似度指导模块及生成支路构成的多尺度相似指导网络;使用小样本训练集对该网络进行训练;将小样本测试集输入到训练好的网络中得到舰船目标的分割结果。本发明相较于其他小样本语义分割方法,有效减少目标域上数据所需标注数据的数量,提高了小样本语义分割效果。可用于SAR图像解译的中间处理。

    基于FW-DCGAN特征生成的极化SAR分类方法

    公开(公告)号:CN110555483B

    公开(公告)日:2022-12-02

    申请号:CN201910846053.8

    申请日:2019-09-09

    摘要: 本发明公开了一种基于FW‑DCGAN特征生成的极化SAR分类方法,主要解决极化SAR数据中分类样本分布不均衡问题。其方案为:对原始极化SAR数据特征提取;获取图像中数据较少地物的极化特征;生成服从Wishart分布的随机噪声Z;构建FW‑DCGAN网络并制作其训练样本S1,利用S1对FW‑DCGAN网络训练;预测噪声Z生成极化特征;构建卷积神经网络并制作其训练样本与测试样本;利用该训练样本对卷积神经网络进行训练,利用训练好的卷积神经网络对测试样本进行预测,得到分类结果。本发明均衡了极化SAR数据中样本分布,提高了数据量稀少地物的分类准确率及总体正确率,可用于极化SAR图像的大场景地物分类。

    基于多尺度相似指导网络的SAR舰船目标分割方法

    公开(公告)号:CN113610097A

    公开(公告)日:2021-11-05

    申请号:CN202110907055.0

    申请日:2021-08-09

    摘要: 本发明公开了一种基于多尺度相似指导网络的舰船目标分割方法,主要解决现有技术在小样本条件下对舰船目标分割结果较差的问题。其方案是:将现有的不同地区且包含不同成像方式的SAR图像舰船目标分割数据集构建原始数据集;将原始数据集构建为小样本分割训练数据集和小样本分割测试数据集;构建由支撑图像的特征提取支路、查询图像的特征提取支路、相似度指导模块及生成支路构成的多尺度相似指导网络;使用小样本训练集对该网络进行训练;将小样本测试集输入到训练好的网络中得到舰船目标的分割结果。本发明相较于其他小样本语义分割方法,有效减少目标域上数据所需标注数据的数量,提高了小样本语义分割效果。可用于SAR图像解译的中间处理。

    基于FW-DCGAN特征生成的极化SAR分类方法

    公开(公告)号:CN110555483A

    公开(公告)日:2019-12-10

    申请号:CN201910846053.8

    申请日:2019-09-09

    IPC分类号: G06K9/62 G06N3/04 G06N3/08

    摘要: 本发明公开了一种基于FW-DCGAN特征生成的极化SAR分类方法,主要解决极化SAR数据中分类样本分布不均衡问题。其方案为:对原始极化SAR数据特征提取;获取图像中数据较少地物的极化特征;生成服从Wishart分布的随机噪声Z;构建FW-DCGAN网络并制作其训练样本S1,利用S1对FW-DCGAN网络训练;预测噪声Z生成极化特征;构建卷积神经网络并制作其训练样本与测试样本;利用该训练样本对卷积神经网络进行训练,利用训练好的卷积神经网络对测试样本进行预测,得到分类结果。本发明均衡了极化SAR数据中样本分布,提高了数据量稀少地物的分类准确率及总体正确率,可用于极化SAR图像的大场景地物分类。

    基于显著图约束和X光头颅定位侧位图像的年龄估计方法

    公开(公告)号:CN112950631B

    公开(公告)日:2023-06-30

    申请号:CN202110410483.2

    申请日:2021-04-13

    IPC分类号: G06T7/00 G06N3/08 G06N3/0464

    摘要: 本发明公开了一种基于显著图约束的头颅定位侧位片年龄估计方法,首次将显著图约束技术和X光头颅定位侧位片应用于年龄估计,解决了现有方法进行年龄估计准确性低并且不稳定的问题。其实现方案为:获取训练样本集、验证样本集和测试样本集;对图像进行填充、缩放和归一化处理;对自适应缩放卷积神经网络进行迭代训练;构建显著图约束训练样本集、显著图约束验证样本集和显著图约束测试样本集;获取自复制样本集和混合训练样本集;构建基于显著图约束的自适应缩放卷积神经网络;对基于显著图约束的自适应缩放卷积神经网络进行迭代训练;获取年龄估计结果;本发明提升了使用X光影像进行年龄估计的准确性和稳定性。