基于加权投票的图像分类方法、系统及电子设备

    公开(公告)号:CN112085051B

    公开(公告)日:2024-02-09

    申请号:CN202010724451.5

    申请日:2020-07-24

    Abstract: 本发明公开了一种基于加权投票的图像分类方法、系统及电子设备。该方法包括:服务端获取待分类图像,对各个客户端发起判定请求;每个客户端根据判定请求,对自身状态参数判定后反馈响应信号给服务端;服务端根据响应信号,将待分类图像分发给可以参加分类任务的目标客户端;各个目标客户端将待分类图像输入各自预先训练的少样本网络模型进行分类,得到第一分类结果;服务端对各个目标客户端的少样本网络模型进行评分,并基于该评分结果和第一分类结果进行加权投票计算,输出投票值;服务端对投票值汇总整理,输出第二分类结果。通过对客户端的模型进行评分并对客户端输出的第一分类结果进行加权投票计算,进一步提高分类的精确度。

    基于加权投票的图像分类方法、系统及电子设备

    公开(公告)号:CN112085051A

    公开(公告)日:2020-12-15

    申请号:CN202010724451.5

    申请日:2020-07-24

    Abstract: 本发明公开了一种基于加权投票的图像分类方法、系统及电子设备。该方法包括:服务端获取待分类图像,对各个客户端发起判定请求;每个客户端根据判定请求,对自身状态参数判定后反馈响应信号给服务端;服务端根据响应信号,将待分类图像分发给可以参加分类任务的目标客户端;各个目标客户端将待分类图像输入各自预先训练的少样本网络模型进行分类,得到第一分类结果;服务端对各个目标客户端的少样本网络模型进行评分,并基于该评分结果和第一分类结果进行加权投票计算,输出投票值;服务端对投票值汇总整理,输出第二分类结果。通过对客户端的模型进行评分并对客户端输出的第一分类结果进行加权投票计算,进一步提高分类的精确度。

    基于联邦少样本网络模型的分类方法、系统及电子设备

    公开(公告)号:CN112101403B

    公开(公告)日:2023-12-15

    申请号:CN202010724611.6

    申请日:2020-07-24

    Abstract: 本发明公开了一种基于联邦少样本网络模型的分类方法、系统及电子设备。该方法包括:服务端获取待分类图像,对各个客户端发起判定请求;每个客户端根据判定请求,对自身状态参数判定后反馈是否能参加分类任务的响应信号给服务端;服务端根据反馈的响应信号,将待分类图像分发给可以参加分类任务的目标客户端;各个目标客户端将待分类图像输入各自预先训练的少样本网络模型进行分类,得到第一分类结果;服务端对第一分类结果汇总整理,输出第二分类结果。本发明利用多个只需少量标签数据的客户端的模型,解决了现有机器学习中数据隐私

    基于生成对抗网络的图像分类方法、系统及电子设备

    公开(公告)号:CN112101404A

    公开(公告)日:2020-12-18

    申请号:CN202010725682.8

    申请日:2020-07-24

    Abstract: 本发明公开了一种基于生成对抗网络的图像分类方法、系统及电子设备。该方法包括:服务端获取待分类图像,对各个客户端发起判定请求;每个客户端根据判定请求,对自身状态参数判定后反馈响应信号给服务端;服务端根据响应信号,将待分类图像分发给可以参加分类任务的目标客户端;各个目标客户端将待分类图像输入各自预先训练的少样本网络模型进行分类,得到第一分类结果;服务端对第一分类结果汇总整理,输出第二分类结果。本发明通过采用生成对抗网络训练客户端的少样本网络模型,提高少样本网络模型的鲁棒性和分类精确度。

    基于联邦少样本网络模型的分类方法、系统及电子设备

    公开(公告)号:CN112101403A

    公开(公告)日:2020-12-18

    申请号:CN202010724611.6

    申请日:2020-07-24

    Abstract: 本发明公开了一种基于联邦少样本网络模型的分类方法、系统及电子设备。该方法包括:服务端获取待分类图像,对各个客户端发起判定请求;每个客户端根据判定请求,对自身状态参数判定后反馈是否能参加分类任务的响应信号给服务端;服务端根据反馈的响应信号,将待分类图像分发给可以参加分类任务的目标客户端;各个目标客户端将待分类图像输入各自预先训练的少样本网络模型进行分类,得到第一分类结果;服务端对第一分类结果汇总整理,输出第二分类结果。本发明利用多个只需少量标签数据的客户端的模型,解决了现有机器学习中数据隐私容易被恶意攻击、污染的问题,以及需要大量标签数据的问题,且具有良好的分类精确度和分类置信度。

    基于多种网络协同模型的自动驾驶系统及方法

    公开(公告)号:CN112078593A

    公开(公告)日:2020-12-15

    申请号:CN202010724471.2

    申请日:2020-07-24

    Abstract: 本发明涉及一种基于多种网络协同模型的自动驾驶系统和方法,其系统包括自动驾驶控制装置、图像采集装置、存储器和处理器,其中,图像采集装置采集道路实时图片,并在识别出目标图片时提出查询请求;存储器接收查询请求,并将目标图片输入至少三个预先训练的不同类型的网络模型;每个预先训练的网络模型对目标图片分类后输出各自的分类结果;处理器接收并汇总各自的分类结果,输出识别结果;自动驾驶控制装置根据识别结果控制车辆自动驾驶。本发明的方案基于多种网络模型协同判断,避免了单一模型会受到对抗样本欺骗的问题,目标信息不会受到污染,会被正确识别,对于自动驾驶来说,具有非常高的安全性和可靠性。

    基于多种网络协同模型的自动驾驶系统及方法

    公开(公告)号:CN112078593B

    公开(公告)日:2021-12-21

    申请号:CN202010724471.2

    申请日:2020-07-24

    Abstract: 本发明涉及一种基于多种网络协同模型的自动驾驶系统和方法,其系统包括自动驾驶控制装置、图像采集装置、存储器和处理器,其中,图像采集装置采集道路实时图片,并在识别出目标图片时提出查询请求;存储器接收查询请求,并将目标图片输入至少三个预先训练的不同类型的网络模型;每个预先训练的网络模型对目标图片分类后输出各自的分类结果;处理器接收并汇总各自的分类结果,输出识别结果;自动驾驶控制装置根据识别结果控制车辆自动驾驶。本发明的方案基于多种网络模型协同判断,避免了单一模型会受到对抗样本欺骗的问题,目标信息不会受到污染,会被正确识别,对于自动驾驶来说,具有非常高的安全性和可靠性。

Patent Agency Ranking