-
公开(公告)号:CN113033672B
公开(公告)日:2023-07-28
申请号:CN202110335732.6
申请日:2021-03-29
Applicant: 西安电子科技大学
IPC: G06V20/13 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了一种基于特征增强的多类别光学图像旋转目标自适应检测方法,实现步骤为:获取训练样本集和测试样本集;构建基于特征增强的光学图像旋转目标检测网络模型;对基于特征增强的光学图像旋转目标检测网络模型进行迭代训练;通过训练好的基于特征增强的光学图像旋转目标检测网络模型对所有目标的边界框位置和类别置信度进行检测。本发明通过特征增强子网络对特征提取子网络提取后的特征进行卷积融合,增强了目标的语义特征和位置特征,同时检测网络在卷积融合后的高分辨率特征图上检测出更多的小尺度目标,减小了小尺度目标漏检的几率,提高了任意方向多尺度旋转目标检测的召回率和准确率,可用于资源管理、安全预警、非法活动识别等领域。
-
公开(公告)号:CN113033672A
公开(公告)日:2021-06-25
申请号:CN202110335732.6
申请日:2021-03-29
Applicant: 西安电子科技大学
Abstract: 本发明提出了一种基于特征增强的多类别光学图像旋转目标自适应检测方法,实现步骤为:获取训练样本集和测试样本集;构建基于特征增强的光学图像旋转目标检测网络模型;对基于特征增强的光学图像旋转目标检测网络模型进行迭代训练;通过训练好的基于特征增强的光学图像旋转目标检测网络模型对所有目标的边界框位置和类别置信度进行检测。本发明通过特征增强子网络对特征提取子网络提取后的特征进行卷积融合,增强了目标的语义特征和位置特征,同时检测网络在卷积融合后的高分辨率特征图上检测出更多的小尺度目标,减小了小尺度目标漏检的几率,提高了任意方向多尺度旋转目标检测的召回率和准确率,可用于资源管理、安全预警、非法活动识别等领域。
-