一种多模型融合预测电网缺陷物资的方法及系统

    公开(公告)号:CN111639815A

    公开(公告)日:2020-09-08

    申请号:CN202010490388.3

    申请日:2020-06-02

    Abstract: 本发明公开了一种多模型融合预测电网缺陷物资的方法及系统,包括,基于不同区域、时间、设备的故障概率策略依次构建回归模型、负反馈神经网络模型、梯度提升树GBDT模型及XgBoost模型;将采集的缺陷物资数据及对应的气象数据统一输入至所述回归模型、所述负反馈神经网络模型、所述梯度提升树GBDT模型及所述XgBoost模型中进行训练;分别输出各个模型对应的预测结果;利用多模型融合策略融合处理训练完成的多个模型形成预测模型并求取所述预测结果的平均值,获得最终的融合预测结果。本发明实现以指导应急抢修物资种类、规模和地点的提前存储,提高电网公司物资管理的前瞻规划能力,在增强电网运行可靠性的同时,降低电网企业运营物资的成本。

Patent Agency Ranking