一种结合深度网络特征和机器学习模型的乳腺癌数据分类方法

    公开(公告)号:CN111027590B

    公开(公告)日:2023-03-24

    申请号:CN201911092339.8

    申请日:2019-11-11

    摘要: 本发明公开了一种结合深度网络特征和机器学习模型的乳腺癌数据分类方法,属于大数据技术领域,包括建立影像采集服务器、客户端和数据分类服务器,勾画和处理肿瘤区域图片,得到分类图片的数据集合,提取带有肿瘤的MRI图层的图像特征,模型构建模块采用Tensorflow和Keras提供的网络模型作为基准模型,建立训练模型,采用SVM径向基核进行分类模型训练,解决了对肿瘤图片进行数据分类的技术问题,本发明结合了迁移学习、深度学习特征提取、影像组学、包装法特征选择、机器学习模型训练等方法,实现了乳腺癌数据的实时分类,提高了分类准确度,本发明利用了深度学习提取的高维度抽象特征,也避免了小数据集在深度学习上的过拟合问题。

    一种结合深度网络特征和机器学习模型的乳腺癌数据分类方法

    公开(公告)号:CN111027590A

    公开(公告)日:2020-04-17

    申请号:CN201911092339.8

    申请日:2019-11-11

    IPC分类号: G06K9/62 G06N20/10 G06T7/11

    摘要: 本发明公开了一种结合深度网络特征和机器学习模型的乳腺癌数据分类方法,属于大数据技术领域,包括建立影像采集服务器、客户端和数据分类服务器,勾画和处理肿瘤区域图片,得到分类图片的数据集合,提取带有肿瘤的MRI图层的图像特征,模型构建模块采用Tensorflow和Keras提供的网络模型作为基准模型,建立训练模型,采用SVM径向基核进行分类模型训练,解决了对肿瘤图片进行数据分类的技术问题,本发明结合了迁移学习、深度学习特征提取、影像组学、包装法特征选择、机器学习模型训练等方法,实现了乳腺癌数据的实时分类,提高了分类准确度,本发明利用了深度学习提取的高维度抽象特征,也避免了小数据集在深度学习上的过拟合问题。