-
公开(公告)号:CN114220170A
公开(公告)日:2022-03-22
申请号:CN202111546456.4
申请日:2021-12-16
申请人: 重庆大学
IPC分类号: G06V40/20 , G06V20/40 , G06V10/46 , G06V10/62 , G06V10/764 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明公开了一种基于时空和运动信息融合的人体行为识别方法,对视频数据提取,得到视频帧集;对视频帧集进行预处理,将预处理后的采样帧输入到构建的深度卷积神经网络模型中;利用其模型对采样帧提取短程运动特征和原始图像特征,两者融合得到第一次融合特征;对第一次融合特征分别进行长程运动和时空特征提取,得到长程运动信息特征和时空信息特征;融合这两种特征,得到第二次融合特征,根据第二次融合特征获得行为分类预测得分;基于分类预测得分获得人体行为识别结果。本发明通过构建深度卷积神经网络模型,利用运动信息提取模块和时空信息提取模块,有效捕获并融合时空特征和多尺度运动特征,进而提高人体行为识别精度。
-
公开(公告)号:CN114220170B
公开(公告)日:2024-08-06
申请号:CN202111546456.4
申请日:2021-12-16
申请人: 重庆大学
IPC分类号: G06V40/20 , G06V20/40 , G06V10/52 , G06V10/62 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
摘要: 本发明公开了一种基于时空和运动信息融合的人体行为识别方法,对视频数据提取,得到视频帧集;对视频帧集进行预处理,将预处理后的采样帧输入到构建的深度卷积神经网络模型中;利用其模型对采样帧提取短程运动特征和原始图像特征,两者融合得到第一次融合特征;对第一次融合特征分别进行长程运动和时空特征提取,得到长程运动信息特征和时空信息特征;融合这两种特征,得到第二次融合特征,根据第二次融合特征获得行为分类预测得分;基于分类预测得分获得人体行为识别结果。本发明通过构建深度卷积神经网络模型,利用运动信息提取模块和时空信息提取模块,有效捕获并融合时空特征和多尺度运动特征,进而提高人体行为识别精度。
-