-
公开(公告)号:CN114881086B
公开(公告)日:2023-08-11
申请号:CN202210558338.3
申请日:2022-05-21
Applicant: 重庆大学
IPC: G06F18/213 , G06F18/24 , G06N3/0442 , G06Q10/0639 , G06Q50/04 , G01M13/04
Abstract: 本发明公开了一种基于注意力LSTM的配对轴承智能质量识别方法,包括如下步骤:步骤一:采集配对轴承的预紧力信号P、位移信号S和摩擦扭矩信号M;步骤二:对采集得到的信号进行小波转换处理,得到可作为图卷积神经网络输入数据的二维数据;步骤三:将得到的二维数据输入图卷积神经网络以提取数据空间特征,在图卷积神经网络中设置残差块,并在残差块后设有SE注意力模块;步骤四:将经图卷积神经网络输出的数据输入到LSTM神经网络中,以提取所测配对轴承的型号特征;步骤五:利利用Softmax函数对全连接层输出的数据进行归一化处理,为每个输出分类的结果都赋予概率值以表示每个类别的可能性,以识别配对轴承的质量。
-
公开(公告)号:CN114881086A
公开(公告)日:2022-08-09
申请号:CN202210558338.3
申请日:2022-05-21
Applicant: 重庆大学
Abstract: 本发明公开了一种基于注意力LSTM的配对轴承智能质量识别方法,包括如下步骤:步骤一:采集配对轴承的预紧力信号P、位移信号S和摩擦扭矩信号M;步骤二:对采集得到的信号进行小波转换处理,得到可作为图卷积神经网络输入数据的二维数据;步骤三:将得到的二维数据输入图卷积神经网络以提取数据空间特征,在图卷积神经网络中设置残差块,并在残差块后设有SE注意力模块;步骤四:将经图卷积神经网络输出的数据输入到LSTM神经网络中,以提取所测配对轴承的型号特征;步骤五:利利用Softmax函数对全连接层输出的数据进行归一化处理,为每个输出分类的结果都赋予概率值以表示每个类别的可能性,以识别配对轴承的质量。
-