-
公开(公告)号:CN110348383A
公开(公告)日:2019-10-18
申请号:CN201910625253.0
申请日:2019-07-11
发明人: 丁忆 , 李朋龙 , 胡翔云 , 曾安明 , 张泽烈 , 胡艳 , 徐永书 , 魏域君 , 李晓龙 , 张觅 , 罗鼎 , 陈静 , 郑中 , 刘朝晖 , 王亚林 , 范文武 , 王小攀 , 连蓉 , 林熙 , 谭攀
摘要: 本发明公开了一种基于卷积神经网络回归的道路中心线和双线提取方法,包括如下步骤:利用已训练卷积神经网络,预测出待提取的高分辨率遥感影像的道路中心线距离图和道路宽度图;利用非极小值抑制算法,结合道路中心线距离图提取出道路中心线;根据提取出的道路中心线,结合道路宽度图提取出道路双线;选取道路中心线上的像素点作为初始道路种子点,计算初始道路种子点所在的道路方向,利用道路追踪算法重建道路网络的拓扑结构,输出道路网络提取结果。该方法通过端对端的训练,直接从训练数据中学习到易于分类的特征,不需要任何后处理来提取道路中线和边线,泛化能力更强,道路提取精度高,细小道路提取效果较好。
-
公开(公告)号:CN108269228B
公开(公告)日:2019-01-29
申请号:CN201810126064.4
申请日:2018-02-08
申请人: 重庆市地理信息中心
发明人: 李朋龙 , 胡艳 , 张泽烈 , 徐永书 , 丁忆 , 李静 , 罗鼎 , 段松江 , 吴凤敏 , 李晓龙 , 刘朝晖 , 谭攀 , 魏文杰 , 曾远文 , 王亚林 , 陈晓飞 , 张士勇 , 唐辉
IPC分类号: G06T1/20
摘要: 本发明公开了一种基于GPU并行计算的无人机影像拉花区域自动探测方法,包括CPU端加载原始无人机影像、影像内方位元素、外方位元素和数字高程模型DEM,并根据中心投影构像方程计算正射纠正后正射影像的大小和范围;CPU端创建GPU线程格网、开辟相应的显存,并拷入数据;GPU端按线程格网从纠正后影像像素反算其对应原始影像上的像素坐标;GPU端进行拉花像素判断;GPU端按线程格网对探测结果二值图像进行图像腐蚀和图像膨胀处理;CPU端将拉花检测后的二值图像结果从GPU全局存储器拷到内存,并将二值图像矢量化,获得拉花变形区域矢量数据等步骤。其显著效果是:实现了无人机单片正射影像中拉花变形区域探测的自动化,极大提高了无人机单片正射影像拉花区域探测效率。
-
公开(公告)号:CN108269228A
公开(公告)日:2018-07-10
申请号:CN201810126064.4
申请日:2018-02-08
申请人: 重庆市地理信息中心
发明人: 李朋龙 , 胡艳 , 张泽烈 , 徐永书 , 丁忆 , 李静 , 罗鼎 , 段松江 , 吴凤敏 , 李晓龙 , 刘朝晖 , 谭攀 , 魏文杰 , 曾远文 , 王亚林 , 陈晓飞 , 张士勇 , 唐辉
IPC分类号: G06T1/20
CPC分类号: G06T1/20
摘要: 本发明公开了一种基于GPU并行计算的无人机影像拉花区域自动探测方法,包括CPU端加载原始无人机影像、影像内方位元素、外方位元素和数字高程模型DEM,并根据中心投影构像方程计算正射纠正后正射影像的大小和范围;CPU端创建GPU线程格网、开辟相应的显存,并拷入数据;GPU端按线程格网从纠正后影像像素反算其对应原始影像上的像素坐标;GPU端进行拉花像素判断;GPU端按线程格网对探测结果二值图像进行图像腐蚀和图像膨胀处理;CPU端将拉花检测后的二值图像结果从GPU全局存储器拷到内存,并将二值图像矢量化,获得拉花变形区域矢量数据等步骤。其显著效果是:实现了无人机单片正射影像中拉花变形区域探测的自动化,极大提高了无人机单片正射影像拉花区域探测效率。
-
公开(公告)号:CN110348383B
公开(公告)日:2020-07-31
申请号:CN201910625253.0
申请日:2019-07-11
发明人: 丁忆 , 李朋龙 , 胡翔云 , 曾安明 , 张泽烈 , 胡艳 , 徐永书 , 魏域君 , 李晓龙 , 张觅 , 罗鼎 , 陈静 , 郑中 , 刘朝晖 , 王亚林 , 范文武 , 王小攀 , 连蓉 , 林熙 , 谭攀
摘要: 本发明公开了一种基于卷积神经网络回归的道路中心线和双线提取方法,包括如下步骤:利用已训练卷积神经网络,预测出待提取的高分辨率遥感影像的道路中心线距离图和道路宽度图;利用非极小值抑制算法,结合道路中心线距离图提取出道路中心线;根据提取出的道路中心线,结合道路宽度图提取出道路双线;选取道路中心线上的像素点作为初始道路种子点,计算初始道路种子点所在的道路方向,利用道路追踪算法重建道路网络的拓扑结构,输出道路网络提取结果。该方法通过端对端的训练,直接从训练数据中学习到易于分类的特征,不需要任何后处理来提取道路中线和边线,泛化能力更强,道路提取精度高,细小道路提取效果较好。
-
公开(公告)号:CN110443816A
公开(公告)日:2019-11-12
申请号:CN201910729774.0
申请日:2019-08-08
发明人: 胡艳 , 李朋龙 , 连蓉 , 王亚林 , 张泽烈 , 徐永书 , 李怡静 , 胡翔云 , 丁忆 , 罗鼎 , 段松江 , 吴凤敏 , 王小攀 , 陈静 , 钱进 , 范文武 , 刘建 , 李晓龙 , 郑中 , 谭攀
摘要: 本发明公开了一种基于道路交叉口检测的遥感影像上城市道路提取方法,包括步骤:建立道路交叉口模型,基于遥感影像提取初始道路线;对初始道路线进行求交运算提取初始道路交叉点,并构建初始道路网络;基于影像分割和交叉口轮廓形状分析法对初始道路交叉点进行检测与验证,获取交叉点的类型及其连通的道路方向;根据交叉点的类型选取正确的交叉点,结合其连通的道路方向,构建目标城市道路网络。其显著效果是:基于道路交叉口提取城市道路,为城市道路网提取提供了稳定可靠的提取结果,完整度、准确率更高,有效克服了现有技术中算法不具备普适性、对道路特征和地物情况要求较高等不足。
-
公开(公告)号:CN112862774B
公开(公告)日:2021-12-07
申请号:CN202110140476.5
申请日:2021-02-02
申请人: 重庆市地理信息和遥感应用中心 , 武汉大学
摘要: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
公开(公告)号:CN112862774A
公开(公告)日:2021-05-28
申请号:CN202110140476.5
申请日:2021-02-02
申请人: 重庆市地理信息和遥感应用中心 , 武汉大学
摘要: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
公开(公告)号:CN110443770A
公开(公告)日:2019-11-12
申请号:CN201910737998.6
申请日:2019-08-12
发明人: 丁忆 , 李朋龙 , 连蓉 , 王亚林 , 徐永书 , 张泽烈 , 叶立志 , 胡翔云 , 胡艳 , 陈静 , 罗鼎 , 段松江 , 刘金龙 , 陈甲全 , 吴凤敏 , 王小攀 , 钱进 , 魏文杰 , 曾远文 , 李晓龙
IPC分类号: G06T5/00
摘要: 本发明公开了一种基于离散粗糙度估计的机载激光点云数据噪声检测方法,包括步骤:读取机载激光点云数据,并构建离散点云TIN模型;根据离散点云TIN模型,获取模型中各顶点的一环邻域、二环邻域;采用离散粗糙度估计算子,计算各点的离散粗糙度;计算各点的二环邻域离散粗糙度均值和二环邻域粗糙度标准差;计算各点的二环邻域高程均值和二环邻域高程标准差;标记噪声点。其显著效果是:提高了机载激光点云数据噪声检测的智能化程度,极大地提高了机载激光点云数据处理效率及后续处理精度。
-
-
-
-
-
-
-