-
公开(公告)号:CN112862774A
公开(公告)日:2021-05-28
申请号:CN202110140476.5
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
公开(公告)号:CN112883839B
公开(公告)日:2021-10-22
申请号:CN202110140498.1
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种基于自适应样本集构造与深度学习的遥感影像解译方法,包括步骤:对样本总集进行特征提取,并对提取的特征进行聚类,构建视觉词袋模型的特征词典,得到样本子集;构建基于深度学习网络的解译模型,并先后输入样本总集和聚类的样本子集对解译模型进行训练,分别得到总解译模型和与各样本子集相对应的子解译模型;采用总解译模型以及根据待解译遥感影像的影像特征选取的合适的若干子解译模型,对待解译遥感影像进行自适应解译。其显著效果是:通过聚类的自动化、分布式手段快速建立海量遥感影像的样本库,并利用机器深度学习技术对样本库数据进行训练,获得适应于不同场景的智能解译模型,解译精度高,鲁棒性好。
-
公开(公告)号:CN112862774B
公开(公告)日:2021-12-07
申请号:CN202110140476.5
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
公开(公告)号:CN112883839A
公开(公告)日:2021-06-01
申请号:CN202110140498.1
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种基于自适应样本集构造与深度学习的遥感影像解译方法,包括步骤:对样本总集进行特征提取,并对提取的特征进行聚类,构建视觉词袋模型的特征词典,得到样本子集;构建基于深度学习网络的解译模型,并先后输入样本总集和聚类的样本子集对解译模型进行训练,分别得到总解译模型和与各样本子集相对应的子解译模型;采用总解译模型以及根据待解译遥感影像的影像特征选取的合适的若干子解译模型,对待解译遥感影像进行自适应解译。其显著效果是:通过聚类的自动化、分布式手段快速建立海量遥感影像的样本库,并利用机器深度学习技术对样本库数据进行训练,获得适应于不同场景的智能解译模型,解译精度高,鲁棒性好。
-
公开(公告)号:CN118095956A
公开(公告)日:2024-05-28
申请号:CN202410335861.9
申请日:2024-03-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06Q10/0639 , G06Q50/26
Abstract: 本发明提供一种工程尺度生物多样性恢复成效评估方法、系统和设备,其中,方法包括:获取生物恢复评估基础数据,根据所述生物评估基础数据得到评价指标;对所述评价指标进行标准化处理,得到标准评价指标;根据所述标准评价指标,得到生物恢复评估指数;根据所述生物恢复评估指数进行多样性恢复成效评估。本发明以生物恢复快速的节肢动物作为指示物种,优化了工程尺度的生物多样性恢复成效评估方法,研发了生物恢复评估指数模型,实现了生物多样性恢复效果的量化评估。
-
公开(公告)号:CN118014158A
公开(公告)日:2024-05-10
申请号:CN202410284095.8
申请日:2024-03-13
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06Q10/04 , G06Q10/063 , G06Q50/26
Abstract: 本发明提供一种顾及伞护种习性的面域生态廊道划定方法和系统,其中,方法包括:获取伞护种基础数据,根据所述伞护种基础数据,得到生境影响因子表数据;其中,所述生境影响因子表数据包括多个生境影响因子;根据所述生境影响因子表数据,得到生境影响因子权重;根据所述生境影响因子权重,得到线性廊道;根据所述线性廊道,得到面域廊道。本发明基于遥感和地理空间数据,通过对伞护种习性的梳理与分析,优化了生态源地提取和阻力面构建的流程,有效提高了生态廊道识别的准确性。识别的生态廊道能满足不同物种的迁徙需求,保护和建设价值更高。
-
公开(公告)号:CN117932547A
公开(公告)日:2024-04-26
申请号:CN202410198542.8
申请日:2024-02-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06F18/25 , G06N3/0442 , G06N3/08 , G06N3/047
Abstract: 本发明提供了一种基于深度学习的植被叶面积指数动态估算方法,通过采用基于深度学习算法LSTM模型,利用多个LAI遥感产品和地表反射率数据,反演了不同时间的LAI数据,得到完整的LAI时间序列。该方法不仅可以准确的估算LAI值,而且能够提高LAI的时空连续性,实现了时间和空间连续的LAI的反演。在运用LSTM模型前,先利用双重logistic函数对所选择的LAI遥感观测数据进行融合,双重logistic函数融合技术能够进一步提高原始LAI遥感数据的质量,保证了输入数据的准确性,较大程度上提高了利用LSTM模型估算的可靠性和稳定性。引入了贝叶斯模型平均法以融合基于LSTM模型的多种LAI估算数据,生成最终的LAI数据,进一步保证了LAI数据的时空连续性和一致性,提高了LAI估算数据的准确性。
-
公开(公告)号:CN114863291B
公开(公告)日:2023-08-08
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
-
公开(公告)号:CN112884791B
公开(公告)日:2021-11-26
申请号:CN202110140509.6
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心
Abstract: 本发明公开了一种构建大规模遥感影像语义分割模型训练样本集的方法,将已有的遥感影像矢量数据与多期遥感影像进行配准,并依据图斑密度分别通过滑窗算法自动切割提取初级样本集;对初级样本集中每一张图像进行特征提取,并采用聚类算法进行分类,剔除图像质量不佳的样本,获得中间样本集;将中间样本集分批次输入语义分割模型进行迭代优化训练,并在每次迭代优化完成后对样本进行预测,剔除中间样本集中的错误样本,获得目标样本集。其显著效果是:能够避免生成整幅影像且占用空间极大的掩膜,减少滑窗的滑动次数,提高样本的提取速度与数据质量;提高了正确样本在样本集中的纯度,大幅降低了制作大规模样本集的成本。
-
-
-
-
-
-
-
-
-