摘要:
A hybrid optical electronic mapper-shuffler-reducer structure is presented to enhance the interconnection of current multi-dimensional direct networks. The physically intrinsic multicast design of the hybrid optical electronic mapper-shuffler-reducer structure of the present disclosure naturally supports parallel traffic modes such as multicast, broadcast and newly developed incast, while easily supporting point-to-point traffic. By scaling up this architecture, using a simple multi-dimensional topology, a remarkably massive network can be achieved with only 3 hops end-to-end latency. Compared to other multi-dimensional direct networks, the latency is substantially improved and is also made more uniform.
摘要:
Optical networking has become ubiquitous in providing low cost, high speed communications networks supporting our communication needs from FTTH through long haul to undersea. The large number of users and high speeds provided to each user fiber mean that information retrieval and routing functionality within the data centers hosting this information can become the bottleneck both in terms of speed and latency. According to embodiments of the invention the inventors present architectures based upon all-optical passive optical networks that support a distributive approach to latency reduction as well as protocols relating to their deployment. Beneficially, such POCXN concepts exploit optical components already supported by high volume manufacturing techniques as well as CWDM/DWDM techniques for throughput increase.
摘要:
Optical networking has become ubiquitous in providing low cost, high speed communications networks supporting our communication needs from FTTH through long haul to undersea. The large number of users and high speeds provided to each user fiber mean that information retrieval and routing functionality within the data centers hosting this information can become the bottleneck both in terms of speed and latency. According to embodiments of the invention the inventors present architectures based upon all-optical passive optical networks that support a distributive approach to latency reduction as well as protocols relating to their deployment. Beneficially, such POCXN concepts exploit optical components already supported by high volume manufacturing techniques as well as CWDM/DWDM techniques for throughput increase.