Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
In a process for producing a hydroprocessing catalyst, a particulate metal oxide composition comprising an oxide of at least one first metal selected from Group 6 of the Periodic Table of the Elements can be mixed with particles of a sulfide of at least one second metal selected from Groups 8 to 10 of the Periodic Table of the Elements to produce a particulate catalyst precursor. The particulate catalyst precursor can then be sulfided under conditions sufficient to at least partially convert the particulate catalyst precursor into a layered metal sulfide having defect sites associated with the second metal sulfide.
Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
Naphtha is selectively hydrodesulfurized with retention of olefin content. More particularly, a CoMo metal hydrogenation component is loaded on a silica or modified silica support in the presence of an organic additive to produce a catalyst which is then used for hydrodesulfurizing naphtha while retaining olefins.
Abstract:
The invention relates to a process for upgrading hydrocarbonaceous feedstreams by hydroprocessing using bulk bimetallic catalysts. More particularly, the invention relates to a catalytic hydrotreating process for the removal of sulfur and nitrogen from a hydrocarbon feed such as a fuel or a lubricating oil feed. The catalyst is a bulk catalyst containing at leas one Group VIII metal and at least one Group VIB metal. The catalyst is prepared hydrothermally.
Abstract:
Waxy feeds are converted to a basestock using a unitized mixed powdered pellet catalyst comprising a metal hydrogenation component on a support having a frist dewaxing component and a second isomerization component, wherein the first component is selected from 10 and 12 ring molecular sieves and mixtures thereof and the second component is an amorphous inorganic oxide. The first and second components are present in a ratio sufficient to promote wax isomerization and naphthene distractions without substantial decrease in VI.
Abstract:
A method for hydrodesulfurizing FCC naphtha is described. More particularly, a Co/Mo metal hydrogenation component is loaded on a silica or modified silica support in the presence of organic ligand and sulfided to produce a catalyst which is then used for hydrodesulfurizing FCC naphtha. The silica support has a defined pore size distribution which minimizes olefin saturation.