Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
In a process for producing a hydroprocessing catalyst, a particulate metal oxide composition comprising an oxide of at least one first metal selected from Group 6 of the Periodic Table of the Elements can be mixed with particles of a sulfide of at least one second metal selected from Groups 8 to 10 of the Periodic Table of the Elements to produce a particulate catalyst precursor. The particulate catalyst precursor can then be sulfided under conditions sufficient to at least partially convert the particulate catalyst precursor into a layered metal sulfide having defect sites associated with the second metal sulfide.
Abstract:
The present invention is directed to a process for hydrogenating one or more organic compounds especially unsaturated organic compounds by bringing the compound into contact with a hydrogen-containing gas in the presence of a catalyst, which comprises one or more catalytically active metals applied to a porous catalyst support. The one or more catalytically active metals having been derived via a decomposed organic complex of the metal on the support, in particular amine complexes of the metal. The decomposed complex may be treated with hydrogen to activate the catalyst before use as a hydrogenation catalyst.
Abstract:
Methods are provided for hydroprocessing a feed (such as hydrotreating, hydrocracking, or hydrofining a feed) to generate a product with a reduced or minimized aromatics content relative to the severity of the hydroprocessing conditions. In some types of hydroprocessing applications, it can be desirable to select the severity of hydroprocessing conditions to achieve a desired level of removal for sulfur, a desired level for removal of nitrogen, and/or a desired level for increasing the viscosity index of a feed. The severity for heteroatom removal and/or viscosity index uplift can also correspond to an amount of conversion of a feed to lower boiling point products, so the lowest severity conditions suitable for achieving a product quality can be desirable. By improving the aromatics saturation during hydroprocessing, the severity of subsequent aromatics saturation processes can be reduced.
Abstract:
Novel bulk tri-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor containing an organic agent.
Abstract:
The instant invention relates to a process to produce lube oil products through the hydrotreating of lube ail boiling range feedstreams in the presence of a bulk metal hydrotreating catalyst comprising: i) a Group VIB metal component selected from molybdenum, tungsten and mixtures thereof; ii) a Group V metal component selected from vanadium, niobium, tantalum and mixtures thereof; and iii) a Group VIII metal component selected from nickel, cobalt, iron, and mixtures thereof, wherein the metal components (calculated as oxides) comprise at least 50 wt. % of the catalyst, wherein the molar ratio between the metal components satisfies the formula (Group VIB + Group V) : (Group VIII)=0.35-2,1.
Abstract:
The instant invention relates to a process to produce low sulfur distillate products through the hydrotreating of distillate boiling range feedstreams in the presence of a bulk metal hydrotreating catalyst, which comprises: i) a Group VIB metal component selected from molybdenum, tungsten and mixtures thereof; ii) a Group V metal component selected from vanadium, niobium, tantalum, and mixtures thereof; and iii) a Group VIII metal component selected from nickel, cobalt, iron, and mixtures thereof, wherein the metal components, calculated as oxides, comprise at least 50 wt.% of the catalyst based on the weight of the catalysts, and wherein the molar ratio between the metal components, expressed by the formula (Group VIB + Group V) : (Group VIII), ranges from 0.35:1 to 2:1.