摘要:
La présente invention concerne une antenne volumique radiofréquence (100), comportant une pluralité de conducteurs longitudinaux (2) et un circuit de désaccord pour modifier la fréquence de résonance du mode propre de ladite antenne (100) apte à désaccorder ladite antenne sans contact avec lesdits conducteurs longitudinaux (2), ledit circuit de désaccord étant composé par une pluralité de circuits résonants (8) présentant un dispositif de commutation (11) et résonant : à une première fréquence de résonance proche de la fréquence de résonance du mode propre de ladite antenne lorsque le moyen de commutation (11) est en position fermée de manière à induire par effet inductif une réactance sur chaque conducteur longitudinal (2) et à modifier la fréquence de résonance du mode propre de ladite antenne (100) ; à une deuxième fréquence de résonance supérieure ou inférieure à la fréquence de résonance du mode propre de ladite antenne de manière à minimiser le couplage entre le circuit de désaccord et les conducteurs longitudinaux (2) lorsque ledit moyen de commutation (11) est en position ouverte, ladite antenne volumique étant caractérisée en ce que l'antenne est une antenne quart-d'onde et en ce que les circuits résonants (8) sont positionnés longitudinalement dans l'antenne (100) à une position où le champ magnétique B1 est maximal.
摘要:
A magnetic resonance imaging (MRI) device includes at least one switching cell that uses a first switcher (310) to switch paths for two of four radio frequency (RF) signals is used to output the two RF signals. The MRI device includes RF coils including a plurality of coils for receiving RF signals from an object to which magnetic fields are applied; an image processor for creating a magnetic resonance image based on the received RF signals; and a switching unit for switching connections between a plurality of input ports (341, 342, 343, 344) connectable to the plurality of coils and a plurality of output ports (323, 333) connectable to the image processor, wherein the switching unit includes at least one switching cell including four input ports, two output ports connected to two of the four input ports, and a first switcher (310) for switching between paths extended from second and third input ports among the four input ports.
摘要:
A passive magnetic flux focusing element comprising electrically conductive wires (1) or faces (2) containing an outer area defined by an outer (3), an inner (4) and connecting edges (5) forming a closed current loop enclosing a surface area penetrated by a time varying magnetic field flux and through induction sets up a time varying electrical current in the conducting loop thereby achieving a counter magnetic field to the penetrating field completely canceling the penetrating field in the interior of the loop, the inner edge being shaped so as to guide the induced current in the opposite sense to the outer edge, thereby setting up a field flux in the same sense as the penetrating flux but of an increased intensity, whereby the resulting field flux is focused to an area enclosed by the inner edge, is characterized in that the element is part of an RF volume- or surface-coil arrangement adapted for receiving and/or transmitting RF signals. Such elements increase the sensitivity and the SNR in MRI and MR spectroscopy experiments due to an increased magnetic flux density by means of Lenz lenses, in combination with a conventional probe.
摘要:
A radio frequency antenna device (30) for use in a magnetic resonance imaging system (10), the magnetic resonance imaging system (10) being configured for acquiring magnetic resonance images of at least a portion of a subject of interest (20); the radio frequency antenna device (30) comprising - at least one radio frequency antennae (32) that is configured for being fed with radio frequency power from at least one radio frequency channel and for applying a radio frequency field B to nuclei of or within the portion of the subject of interest (20) for magnetic resonance excitation, - at least one pickup circuit (46), including an electric or electronic device having a non-linear current-voltage characteristic, - wherein the at least one pickup circuit (46) is configured to provide a trigger signal (56) upon a transfer of the electric or electronic device between a state of high impedance and a state of low impedance, the trigger signal (56) being exploitable for shutting down a supply of radio frequency power to the at least one radio frequency antenna (32) that is magnetically coupled to the at least one inductor (48); a method of operating a magnetic resonance imaging system (10) in a safe manner with regard to effects of emitted radio frequency power; and a method of operating a magnetic resonance imaging system (10) with regard to calibration of a magnitude of an emitted radio frequency magnetic field B 1 .
摘要:
A local magnetic resonance (MR) radio frequency (RF) coil includes a plurality of housing sections that are separable and configured with mating surfaces that meet and engage each other to form an opening which receives a portion of subject anatomy for magnetic resonance imaging, a detachable connector, and a cable. Each housing section includes coil elements enclosed within each housing section which receive MR signals from the received portion of the subject anatomy, and external connectors connected to the coil elements co-located on an outside surface of each housing section and adjacent to the mating surfaces. The detachable connector connects to the external connectors of the housing sections. The cable conveys at least the received MR signals received by the coil elements..
摘要:
A local radio frequency (RF) transmitting coil (26) of a magnetic resonance imaging system (5) has a plurality of coil elements (100). Each coil element (100) has an adjustable load (62) which is adjusted by a control unit (60) to adjust a transmitted B 1 field distribution. The load can be adjusted to shim for a uniform B 1 field distribution. Non-uniform B 1 field distributions can be selected to perform magnetic resonance sequences that use such B 1 field distributions, such as parallel imaging. The B 1 field distribution can be changed during the magnetic resonance sequence to track a moving region of interest, time division multiplex parallel imaging, and the like.
摘要:
Dargestellt und beschrieben ist ein Messsystem (1) für kemmagnetische Messgeräte mit einer Steuerung (2), einem Signalgenerator (3) zum Erzeugen und Ausgeben von elektrischen Anregungssignalen und einer Signalverarbeitung (4) mit einer Eingangsstufe (5) und einer auf die Eingangsstufe (5) im Signalpfad der Signalverarbeitung (4) folgenden Signalkonditionierung (6) zur Verarbeitung der von den Anregungssignalen hervorgerufenen und am Eingang der Eingangsstufe (5) eingehenden elektrischen Messsignale, wobei auch von den Anregungssignalen hervorgerufene und nicht zeitgleich mit den Messsignalen auftretende Störsignale am Eingang der Eingangsstufe (5) eingehen, der Signalhub der Messsignale kleiner ist als der Signalhub der Störsignale und die Steuerung (2) die Zeitpunkte des Ausgebens der Anregungssignale bestimmt. Ein Messsystem (1), das eine Anpassung des von der Signalverarbeitung (4) verarbeitbaren maximalen Signalhubs an den maximalen Signalhub der von den Anregungssignalen hervorgerufenen Messsignale ermöglicht, wird dadurch realisiert, dass im Signalpfad der Signalverarbeitung (4) zwischen dem Ausgang der Eingangsstufe (5) und dem Eingang der Signalkonditionierung (6) ein Schalter (7) angeordnet ist, der Schalter (7) durch die Steuerung (2) in einen ersten Schaltzustand I und einen zweiten Schaltzustand II schaltbar ist, im ersten Schaltzustand I das Signal am Ausgang der Eingangsstufe (5) an den Eingang der Signalkonditionierung (6) geleitet ist und im zweiten Schaltzustand II das Signal am Ausgang der Eingangsstufe (5) nicht an den Eingang der Signalkonditionierung (6) geleitet ist, dass die Steuerung (2) ausgebildet ist, den Schalter (7) nur in den Zeiträumen in den ersten Schaltzustand I zu schalten, in denen keine Störsignale am Eingang der Eingangsstufe (5) anliegen, und dass der Aussteuerbereich des Eingangs der Signalkonditionierung (6) an den Spannungshub der Messsignale angepasst ist.
摘要:
A high-pass two-dimensional ladder network has been described for high-field MRI and credential applications. The next-to-highest eigenvalue of the network corresponds to a normal mode giving rise to B1 fields with good spatial homogeneity above the resonator plane. Other eigenvalues may also be used for specific imaging applications. In its most basic form, the ladder network is a collection of inductively coupled resonators where each element of the array is represented by at least one conducting strip having a self-inductance L, joined by a capacitor C at one or more points along each resonator. In the strong coupling limit of the inductively coupled high-pass two-dimensional ladder network resonator array, the array produces a high-frequency resonant mode that can be used to generate the traditional quadrature B1 field used in magnetic resonance imaging, and in the limit of weak or zero coupling reduces to a phased array suitable for parallel imaging applications.
摘要:
An interface device (300) for interfacing an intracavity probe comprises a magnetic resonance system (10) having a receive cycle and a transmit cycle of operation, said intracavity probe having a coil loop and a pair of output cables terminating in a connector therefor for connecting said coil loop to said interface device (300), said interface device (300) comprising: (a) a connector (303) to which said intracavity probe is connectable via said connector thereof; (b) a phase shifting network (310) linked to said connector (303), said phase shifting network (310) having first and second sub-networks (320,330) to which a first and a second of said output cables are joined, respectively, when said connectors (303) of said intracavity probe and said interface device (300) are connected, each of said output cables connected at the other end thereof across a drive capacitor in said coil loop and having an electrical length of S L + n(»/4) wherein S L is a supplemental length whose reactance is of a same magnitude as a reactance of said drive capacitor corresponding thereto, n is an odd integer and » is a wavelength of the operating frequency of said magnetic resonance system (10); and (c) a pair of PIN diodes (33) of which a first PIN diode is connected across an output of said first sub-network (320) and a second PIN diode is connected across an output of said second sub-network (330) such that an electrical length of each of said first and said second sub-networks (320,330) from said connector of said interface device (300) to said PIN diode corresponding thereto is »/4; wherein when said connectors (303) of said intracavity probe and said interface device (300) are connected, said phase shifting network (310) enables said coil loop (i) during said receive cycle when said PIN diodes (33) are reversed biased to be coupled through said output cables to a probe input port of said magnetic resonance system (10) thus allowing magnetic resonance signals received from each of said output cables to be constructively combined and routed to said probe input port and (ii) during said transmit cycle when said PIN diodes (33) are forward biased to be decoupled from a transmit field of said magnetic resonance system (10) via a combined electrical length of S L + n(»/2) of each of said output cables and said sub-network (320,330) corresponding thereto ( Fig. 16 ).
摘要:
A magnetic resonance imaging system (10) includes a transmit coil (22) and one or more receive coils (32). The transmit coil includes one or more circuit segments (44, 44, 80, 90) including a light-sensitive metal-insulator-semiconductor capacitor (50) which is connected by an optic fiber to one of a plurality of variable light sources (68). In the set-up mode, the transmit coil transmits RF pulses into an examination region (14). A plurality of the receive coils are disposed around the imaging region. The tuning processor (60) analyzes the received RF fields from around the imaging region and determines adjustments to the amount of light transmitted to each light-sensitive capacitor to shim or tune the transmit coil to optimize RF field homogeneity. Further, the receive coils (32') include a light-sensitive capacitor whose illumination is changed during RF transmission to detune the receive coil.