摘要:
The present invention describes a method for adaptively determining a plurality of sedimentary facies from 3D seismic data, comprising the steps of (a) generating an attribute volume comprising at least one attribute from said 3D seismic data; (b) generating at least one frequency decomposition color blend volume from said 3D seismic data; (c) generating a data volume comprising at least one geological object utilizing data from said attribute volume and said frequency decomposition color blend volume; (d) generating a facies classification model dataset for a predetermined region of interest of said 3D seismic data applying a probabilistic algorithm and utilizing data from said geobody volume and said frequency decomposition color blend volume; (e) selectively adjusting at least one first model parameter, so as to optimize said facies classification model dataset in accordance with a conceptual geological model; and (f) selectively providing said facies classification model dataset in a representative property model of said region of interest of said 3D seismic data.
摘要:
A method for use in seismic exploration comprises: accessing a set of seismic data representative of a subterranean geological formation and a subsurface attribute model of the subterranean geological formation; performing a wavefield extrapolation on the seismic data in the subsurface attribute model; applying the time-shift extended imaging condition to the extrapolated wavefields; forming shot-indexed, time shift gathers for each image pixel of the subsurface attribute model from the conditioned extrapolated wavefields; adaptively focusing the gathers; and stacking the adaptively focused gathers; and imaging the subterranean geological formation from the stacked, adaptively focused gathers. The method may, in some aspects, be realized by a computing apparatus programmed to perform the method or as a set of instructions encoded on a non-transitory program storage medium that, when executed by a computing apparatus, perform the method.
摘要:
A method for bump mapping, which comprises: selecting a first attribute and a second attribute from multiple attributes. The first attribute and the second attribute each have their own vertices. The method further comprises calculating a normal map using at least one of the first and second attributes, the normal map having its own vertices. The method further comprises creating a tangent space normal map using the normal map vertices and the vertices of the at least one of the first and second attributes used to calculate the normal map and calculating at least one of a diffuse lighting component and an ambient lighting component for the tangent space normal map and the at least one of the first and second attributes used to calculate the normal map. The method further comprises combining at least one of the ambient lighting components and the diffuse lighting component with a specular lighting component and at least one of the first and second attributes using a graphics card to form an enhanced image.
摘要:
Oilfield and wellbore data may include geophone data (seismic) and airborne surveys such as microseep data, as well as fiber optic measurements collected utilizing a distributed sensing system. Continuous monitoring of various oilfield and wellbore properties, such as temperature, pressure, Bragg gradient, acoustic, and strain, and the like, may generate a large volume of data, possibly spanning into several terabytes. Embodiments of the present invention provide techniques for visualizing a large volume of such measurements taken in a oilfield or wellbore without down-sampling measurement data.
摘要:
Computing device and method for processing seismic traces to produce an image of a subsurface area. The method includes receiving a series of seismic traces related to the subsurface area and recorded by one or more seismic receivers, wherein the one or more seismic sources are originally generated by a source; applying a phase encoding function to the series of seismic traces, at least a portion of said seismic traces comprise signals reflected by geological interfaces of the subsurface area; applying a 3 dimensional (3D) harmonic-source reverse time migration of the series of seismic traces encoded with the phase encoding function; computing a forward wavefield by solving a first wave equation; computing a backward wavefield by solving a second wave equation; and cross-correlating the forward wavefield with the backward wavefield to generate an image of the subsurface.
摘要:
A computerized system creates and communicates to a user a wellbore property-height profile of a selected property, such as permeability, at each cell location defining the wellbore. The property-height value is determined based on a “summation from base” algorithm. The system may also be used to create a property-height profile in horizontal and slant wells, by creating a plurality of vertical pseudo-wells which intersect the trajectory of the horizontal or slant well.
摘要:
A method can include receiving data sets where each of the data sets corresponds to one of a plurality of individual emitter-detector arrangements; calculating a multi-dimensional similarity metric for one of the data sets; and, based at least in part on the multi-dimensional similarity metric, assessing the one data set.
摘要:
A method can include receiving data sets where each of the data sets corresponds to one of a plurality of individual emitter-detector arrangements; calculating a multi-dimensional similarity metric for one of the data sets; and, based at least in part on the multi-dimensional similarity metric, assessing the one data set.
摘要:
Disclosed vertical seismic profiling (VSP) survey systems and method acquire multi-component signal data and represent the signal data in terms of a combination of parameterized compression, shear, and dispersive wavefields. Multiples of each wavefield type may be included, e.g., to separate upgoing and downgoing wavefield components. A nonlinear optimization is employed to concurrently estimate an incidence angle and a slowness value for each wavefield. For the dispersive wavefield(s), the slowness may be parameterized in terms of a phase slowness and a group slowness with respect to a central wave frequency. The parameter values may vary as a function of depth.