A METHOD FOR DETERMINING SEDIMENTARY FACIES USING 3D SEISMIC DATA

    公开(公告)号:EP3254142B1

    公开(公告)日:2018-07-25

    申请号:EP15813512.9

    申请日:2015-12-14

    IPC分类号: G01V1/30 G01V1/34

    CPC分类号: G01V1/302 G01V1/345

    摘要: The present invention describes a method for adaptively determining a plurality of sedimentary facies from 3D seismic data, comprising the steps of (a) generating an attribute volume comprising at least one attribute from said 3D seismic data; (b) generating at least one frequency decomposition color blend volume from said 3D seismic data; (c) generating a data volume comprising at least one geological object utilizing data from said attribute volume and said frequency decomposition color blend volume; (d) generating a facies classification model dataset for a predetermined region of interest of said 3D seismic data applying a probabilistic algorithm and utilizing data from said geobody volume and said frequency decomposition color blend volume; (e) selectively adjusting at least one first model parameter, so as to optimize said facies classification model dataset in accordance with a conceptual geological model; and (f) selectively providing said facies classification model dataset in a representative property model of said region of interest of said 3D seismic data.

    SEISMIC ADAPTIVE FOCUSING
    3.
    发明公开
    SEISMIC ADAPTIVE FOCUSING 审中-公开
    自适应地震FOKUSSIERUNG

    公开(公告)号:EP3129809A1

    公开(公告)日:2017-02-15

    申请号:EP15717352.7

    申请日:2015-04-02

    IPC分类号: G01V1/30 G01V1/36

    摘要: A method for use in seismic exploration comprises: accessing a set of seismic data representative of a subterranean geological formation and a subsurface attribute model of the subterranean geological formation; performing a wavefield extrapolation on the seismic data in the subsurface attribute model; applying the time-shift extended imaging condition to the extrapolated wavefields; forming shot-indexed, time shift gathers for each image pixel of the subsurface attribute model from the conditioned extrapolated wavefields; adaptively focusing the gathers; and stacking the adaptively focused gathers; and imaging the subterranean geological formation from the stacked, adaptively focused gathers. The method may, in some aspects, be realized by a computing apparatus programmed to perform the method or as a set of instructions encoded on a non-transitory program storage medium that, when executed by a computing apparatus, perform the method.

    摘要翻译: 一种用于地震勘探的方法包括:访问一组代表地下地质构造的地震资料和地下地质构造的地下属性模型; 对地下属性模型中的地震数据进行波场外推; 将时移扩展成像条件应用于外插波场; 对条件外推波场的地下属性模型的每个图像像素进行射击索引,时移聚合; 自适应地集中聚集; 并堆叠自适应聚焦的聚集; 并从层叠的,自适应聚焦的聚集体中成像地下地质构造。 在一些方面,该方法可以被编程为执行方法或编码在非暂时性程序存储介质上的指令集的计算装置实现,所述指令在由计算装置执行时执行该方法。

    SYSTEM AND METHOD FOR REAL-TIME CO-RENDERING OF MULTIPLE ATTRIBUTES
    4.
    发明公开
    SYSTEM AND METHOD FOR REAL-TIME CO-RENDERING OF MULTIPLE ATTRIBUTES 有权
    系统维也纳ZUR GLEICHZEITIGEN ECHTZEITDARSTELLUNG VON MEHREREN ATTRIBUTEN

    公开(公告)号:EP2960681A2

    公开(公告)日:2015-12-30

    申请号:EP15180361.6

    申请日:2004-07-26

    IPC分类号: G01V1/34 G06T15/04 G06T15/50

    摘要: A method for bump mapping, which comprises: selecting a first attribute and a second attribute from multiple attributes. The first attribute and the second attribute each have their own vertices. The method further comprises calculating a normal map using at least one of the first and second attributes, the normal map having its own vertices. The method further comprises creating a tangent space normal map using the normal map vertices and the vertices of the at least one of the first and second attributes used to calculate the normal map and calculating at least one of a diffuse lighting component and an ambient lighting component for the tangent space normal map and the at least one of the first and second attributes used to calculate the normal map. The method further comprises combining at least one of the ambient lighting components and the diffuse lighting component with a specular lighting component and at least one of the first and second attributes using a graphics card to form an enhanced image.

    摘要翻译: 一种用于凹凸映射的方法,包括:从多个属性中选择第一属性和第二属性。 第一个属性和第二个属性都有自己的顶点。 该方法还包括使用第一和第二属性中的至少一个来计算法线贴图,该法线贴图具有其自己的顶点。 该方法还包括使用法线贴图顶点和用于计算法线贴图的第一和第二属性中的至少一个的顶点创建切线空间法线贴图,并且计算漫射照明元件和环境照明元件中的至少一个 用于切线空间法线贴图和用于计算法线贴图的第一和第二属性中的至少一个。 该方法还包括使用图形卡将至少一个环境照明组件和漫射照明组件与镜面照明组件和第一和第二属性中的至少一个组合以形成增强图像。

    Three/four dimensional data management and imaging for big oilfield data
    5.
    发明公开
    Three/four dimensional data management and imaging for big oilfield data 审中-公开
    用于各大油田三维或四维的数据管理和数据映射

    公开(公告)号:EP2913694A1

    公开(公告)日:2015-09-02

    申请号:EP15156152.9

    申请日:2015-02-23

    IPC分类号: G01V1/34

    摘要: Oilfield and wellbore data may include geophone data (seismic) and airborne surveys such as microseep data, as well as fiber optic measurements collected utilizing a distributed sensing system. Continuous monitoring of various oilfield and wellbore properties, such as temperature, pressure, Bragg gradient, acoustic, and strain, and the like, may generate a large volume of data, possibly spanning into several terabytes. Embodiments of the present invention provide techniques for visualizing a large volume of such measurements taken in a oilfield or wellbore without down-sampling measurement data.

    摘要翻译: 油田和井筒数据可以包括地震检波器数据(地震)和航空勘测:收集利用分布式感测系统,例如microseep数据,以及光纤测量连续监测各种油田和井筒特性,颜色:如温度,压力,布拉格梯度, 声,和应变等,可以生成大量的数据,可能跨越到数TB。 本发明实施例提供一种用于可视化大体积的油田或井眼没有下采样测量数据取搜索测量的技术。

    3-D HARMONIC-SOURCE REVERSE TIME MIGRATION SYSTEMS AND METHODS FOR SEISMIC DATA ANALYSIS
    6.
    发明授权
    3-D HARMONIC-SOURCE REVERSE TIME MIGRATION SYSTEMS AND METHODS FOR SEISMIC DATA ANALYSIS 有权
    随着对地震资料分析和谐源和方法的三维逆时偏移系统

    公开(公告)号:EP2598914B1

    公开(公告)日:2015-05-06

    申请号:EP11743803.6

    申请日:2011-07-26

    IPC分类号: G01V1/00

    摘要: Computing device and method for processing seismic traces to produce an image of a subsurface area. The method includes receiving a series of seismic traces related to the subsurface area and recorded by one or more seismic receivers, wherein the one or more seismic sources are originally generated by a source; applying a phase encoding function to the series of seismic traces, at least a portion of said seismic traces comprise signals reflected by geological interfaces of the subsurface area; applying a 3 dimensional (3D) harmonic-source reverse time migration of the series of seismic traces encoded with the phase encoding function; computing a forward wavefield by solving a first wave equation; computing a backward wavefield by solving a second wave equation; and cross-correlating the forward wavefield with the backward wavefield to generate an image of the subsurface.