摘要:
Provided herein are recombinant modified vaccinia virus Ankara (MVA) strains as improved vaccines against infection with Respiratory Syncytial Virus (RSV virus) and to related products, methods and uses. Specifically, provided herein are genetically engineered recombinant MVA vectors comprising at least one nucleotide sequence encoding an antigenic determinant of an RSV membrane glycoprotein and at least one nucleotide sequence encoding an antigenic determinant of an RSV nucleocapsid protein. Also provided herein are products, methods and uses thereof, e.g., suitable to affect an immune response in a subject, or suitable to diagnose an RSV infection, as well as to determine whether a subject is at risk of recurrent RSV infection.
摘要:
The invention is drawn to compositions and methods for the induction of an immune response, in particular a strong CD8 T cell response, to a specific antigenic determinant without raising a significant antibody response to the antigenic determinant after a first, priming immunization. The method comprises administering to the host a recombinant poxviral vector comprising a transcriptional control element comprising an early and/or late element linked to a nucleotide sequence encoding the antigenic determinant. The recombinant poxviral vector comprises a transcriptional control element comprising an early and/or late element linked to a nucleotide sequence encoding the antigenic determinant. The late element may be stronger than the cowpox ATI promoter in HeLa cells.
摘要:
The invention concerns a recombinant modified vaccinia virus Ankara (MVA virus) expressing at least two external influenza virus antigens and/or an epitope of one or more of the at least two antigens and at least two internal influenza virus antigens and/or an epitope of the at least two antigens. The invention, thus, concerns a recombinant MVA virus encoding multiple external and/or internal influenza virus antigens, preferably from multiple influenza virus strains. The invention further concerns the use of said recombinant MVA in preparing a medicament and vaccine for influenza virus. Further encompassed by the present invention are methods, composition and kits.
摘要:
The present invention relates to one or more promoters and/or expression cassettes that can be used for enhancing expression of a heterologous gene, such as Brachury. In particular, the one or more promoters and/or expression cassettes enhance expression of heterologous genes as part of a viral vector, such as a poxvirus.
摘要:
The present invention provides compositions, vaccines and methods for inducing protective immunity against filovirus infection, particularly protective immunity against infection of one or more subtypes of Ebola viruses and Marburg virus.
摘要:
In the present invention, CD8+ conventional dendritic cells (CD8+ cDCs) and equivalents thereof (eCD8+ cDCs) in mouse and human have been established as major source of IFN-lambda (IFN-λ) in response to double-stranded (ds) nucleic acids. The invention relates to therapeutic applications of ds nucleic acids or analogs thereof targeting CD8+ and/or eCD8+ cDCs in the prevention and/or treatment of infectious diseases, preferably viral infections, or cancer. Furthermore, the invention relates to an in vitro method for producing IFN-λ and/or generating or obtaining a population of IFN-λ producing CD8+ or eCD8+ cDCs as well as in vitro method for detecting or screening for CD8+ and/or eCD8+ cDCs. In addition, the invention relates to a Flt3-ligand or a M-CSF receptor ligand for use in increasing the level of CD8+ and/or eCD8+ cDCs in a subject suffering from an infectious disease or cancer.
摘要:
The invention relates to compositions, kits, and methods for cancer therapy using recombinant poxviruses encoding a tumor-associated antigen in combination with antagonists or agonists of immune checkpoint inhibitors.
摘要:
A novel dendritic cell type has been identified within bone marrow, termed myelos interferon dendritic cells (miDC). These novel cells possess the high IFN-alpha producing activity of pDC, but they also display a wide TLR responsiveness along with T-cell stimulation capacities that more closely resemble the conventional DC populations. Moreover, these cells appear less prone to apoptosis upon activation stimuli, including viruses. These cells constitute a novel bone marrow innate immune cell type, ideally geared to linking innate and adaptive immune responses via their potent IFN-alpha production and high cell stimulatory capacity.