摘要:
The present invention relates to methods for reducing impurities of mycophenolic acid during fermentation by controlling the level of carbon source during fermentation of mycophenolic acid and for the isolation and use as a standard marker of the impurity homo-mycophenolic acid.
摘要:
The present invention provides the use of Enzyme B of G. oxydans DSM 4025, as disclosed in EP 0 832 974 A2, in a process for producing L-ascorbic acid from L-gulose, L- galactose, L-idose or L-talose, or from L-gulono-1,4-lactone (and its acid form, L-gulonic acid) and from L-galactono-1,4-lactone (and its acid form, L-galactonic acid).
摘要:
A process for producing a lactone which comprises reacting an amide compound represented by the general formula (I): (I) (wherein X represents halogeno; R, R', and R1 to R6 each independently represents hydrogen or any desired substituent; and n is an integer of 0 to 2) with an aqueous medium.
摘要:
The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms. The invention also relates to genetically engineered microorganisms and their use for the direct production of Vitamin C.
摘要:
The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms. The invention also relates to genetically engineered microorganisms and their use for the direct production of Vitamin C.
摘要:
The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide 5 sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect 0 impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms. The invention also relates to genetically engineered microorganisms and their use for the direct production of Vitamin C.
摘要:
The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms. The invention also relates to genetically engineered microorganisms and their use for the direct production of Vitamin C.
摘要:
A process is described for the preparation of escitalopram and the pharmaceutically acceptable salts thereof starting from 5-cyanophthalide by a process which provides an enantioselective enzymatic deacylation reaction of a complex of the formula
where R represents a C 1 -C 4 alkyl residue or an aryl residue under the action of an esterase from Aspergillus niger.
摘要:
The present invention provides a simple industrial process for producing an L- or D-optionally active α-methylcysteine derivative or its salt, which is a useful pharmaceutical intermediate, from readily available, inexpensive raw materials. In a process for producing an L- or D-optically active α- methylcysteine derivative or its salt, a racemic N-carbamoyl-α- methylcysteine derivative or its salt is D-selectively cyclized with hydantoinase to produce a D-5-methyl-5-thiomethylhydantoin derivative or its salt and an N-carbamoyl-α-methyl-L-cysteine derivative or its salt, which are then subjected to deprotection of the amino group and the sulfur atom, and hydrolysis.