Abstract:
A clamping mechanism in a diffusion bonding apparatus comprising a first clamping section which clamps the vinicity of the end of a material to be bonded, and a second clamping section which is further from the end of the material and clamps the material in that position; wherein the first clamping section prevents deformation in the ends of the materials to be bonded, while the second clamping section clamps the material in order to obtain predetermined pressure at the bonding part of the materials.
Abstract:
Apparatus (10) and method of forming a deep sea pipeline or a cross country pipeline by welding pipes together to form the pipeline. Two pipes (2, 4) are arranged so that their ends (26, 27) define a circumferentially extending narrow angled (less than 10 degrees) groove (28). At least two arc welding torches (1) are arranged directly adjacent to each other on a single carriage that moves around the pipes, to form a twin arc welding system. The arcs of the torches (1) form a weld (3) in the groove. The carriage is moved around the pipe, the torches thus moving around the pipe with the same speed. Each torch (1) is independently oscillated so that the position of its arc oscillates between the walls of the groove. The arcs are guided automatically by an electronic guidance system, wherein electrical characteristics (such as arc current or voltage) of the welding of each torch (1) with regard to each pipe (2, 4), respectively, are ascertained and a comparison made between the electrical characteristics relating to one of the pipes with the corresponding electrical characteristics relating to the other of the pipes. The position of an arc of a torch (1) may thus be aligned with the centre line of the groove (28).
Abstract:
A method of creating a weld to connect a first element to a second element, said elements being arranged in a wellbore (1) containing a wellbore fluid, is provided. The method comprises selecting a welding path along which the weld is to be created, selecting a volume portion of the wellbore, in which selected volume portion said path is located and sealing said selected volume portion from the remainder of the wellbore volume, and providing pressure control means (12, 16) for controlling the fluid pressure in said selected volume portion. The pressure control means is then operated so as to reduce the fluid pressure in said selected volume portion to a selected pressure at which the weld can be created, and the weld is created along the selected welding path.
Abstract:
A high strength clad material having excellent moldability, specifically a three-layered clad material produced by using a stainless steel as a substrate and integrating a sheet of nickel or its alloy with one principal plane of the substrate and a sheet of copper with the other principal plane of the substrate both by pressure welding or a two- or three-layered clad material produced by integrating a sheet of nickel or its alloy with at least one principal plane of the substrate by pressure welding. The clad material makes it possible to further increase the relative thickness of the stainless steel, while reducing the total thickness of the clad material, thus realizing a mechanical strength (tensile strength) at least equivalent to that of the conventional two- or three-layered clad material. A tension bridle roll having a predetermined size and shape is disposed on the feed side of a pressure welding roll and a sheet of nickel, copper, etc., is fed to the pressure welding roll through the tension bridle roll, thus making it possible to apply a uniform tension to each sheet as a whole, to prevent the occurrence of breakage and wrinkles during the pressure welding, to reduce the thicknesses of both nickel and copper sheets before pressure welding to about 5 νm, and to reduce the relative thickness of each sheet in the three-layered clad material for a battery case to about 0.5 % of the total thickness.
Abstract:
Bei einem Verfahren zur Herstellung eines Metallrohres (10), bei dem ein Band (1) aus Kupfer oder einer Kupferlegierung kontinuierlich von einem Bandvorrat abgezogen und zu einem Schlitzrohr mit auf Stoß geführten Bandkanten geformt wird, und die Bandkanten mit einem Laser (9) verschweißt werden, wird zumindest der Bereich der Bandkanten vor dem Schweißen mechanisch aufgerauht (7), wobei die Rauhtiefe oberhalb von R a =12,5µm liegt und vor dem Schweißen mit einem flüssigen Kohlenwasserstoff (6) benetzt wird.
Abstract:
The present invention provides a high strength α+β titanium alloy pipe not requiring a large amount of cutting and enabling full use to be made of the features of titanium alloy of light weight and high strength and a method for production of the same. Specifically, a high strength α+β titanium alloy pipe having an outside diameter of at least 150 mm and a wall thickness of at least 6 mm, the α+β titanium alloy pipe characterized by having a welded seam running in the longitudinal direction of pipe at one location and by having a ratio of the minimum wall thickness to the maximum wall thickness of the portions excluding the weld zone of 0.95 to 0.99. Also, a method of production of a high strength α+β titanium alloy pipe comprising cold forming a high strength α+β titanium alloy plate of a wall thickness of at least 6 mm into a tubular shape by the U-O method or press-bending method and welding together the abutted plate edges.
Abstract:
A heating furnace tube, a method of using the same and a method of manufacturing the same which have been developed with a view to eliminating inconveniences occurring when a carbon-containing fluid is made to flow in the heating furnace tube. The heating furnace tube which comprises a rare earth oxide particle distributed iron alloy containing 17-26 wt.% of Cr and 2-6 wt.% of Al. The method of manufacturing this heating furnace tube which comprises the steps of forming or inserting an insert metal on or into at least one of a joint end portion of one heating furnace tube element and that of the other heating furnace tube element, bringing these two joint end portions into pressure contact with each other directly or via an intermediate member, and diffusion welding the two heating furnace tube elements to each other by heating the insert metal.
Abstract:
Die Erfindung betrifft ein Verfahren zur Innenbeschichtung eines Waffenrohres, auf dessen innere Oberfläche (13) mindestens in einem Teilbereich (2) mindestens eine Schicht (21) eines Schichtwerkstoff zur Vermeidung von Erosionen aufgebracht wird. Um auf einfache Weise hochschmelzende Schichtwerkstoffe auf die innere Oberfläche (13) des Waffenrohres (1) aufzubringen, schlägt die Erfindung vor, die Innenbeschichtung des jeweiligen Waffenrohres (1) durch Laser-Auftragsschweißen vorzunehmen, wobei auf die innere Oberfläche des Waffenrohres ein entsprechender Laserstrahl (12) gelenkt wird, der die oberflächennahen Bereiche (100) des Waffenrohres (1) aufschmelzt. Der Schichtwerkstoff wird in pulver-, draht- oder bandförmiger Form kurz vor dem Auftreffen des Laserstrahles (12) auf die innere Oberfläche (13) des Waffenrohres (1) eingebracht und durch diesen geschmolzen, so daß sich im oberflächennahen Bereich (100) des Waffenrohres (1) ein den geschmolzenen Waffenrohrwerkstoff und den Schichtwerkstoff enthaltendes Schmelzbad (14) ausbildet, welches bei der Weiterbewegung des Laserstrahles (12) erstarrt.
Abstract:
The clad material 12 is determined with respect to the thickness at both ends C in the length direction of the clad steel pipe 10, that is, the thickness at both ends in the length direction to be welded parts when welding laid clad steel pipes 10 in the construction field, so that the thickness has a value D which enables to absorb discrepancy with another clad steel pipe 10 when welding the laid clad steel pipe 10. The clad material 12 is further determined with respect to the thickness of the part E other than both ends C, so that the thickness has values F smaller than the predetermined value D.