摘要:
The invention discloses a positive electrode active material for a magnesium secondary battery or lithium ion secondary battery, including: a particle including a nucleus and a crystal of vanadium oxide grown from the nucleus as a starting point and having a maximum length of 5 µm or less in the major axis direction.
摘要:
The present invention provides a system and method for purifying and preparing vanadium pentoxide powder. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is purified by rectification, and then subjected to fluidized gas phase ammonification, thereby obtaining ammonium metavanadate, and further obtaining a high-purity vanadium pentoxide powder product through fluidized calcination. The system and method have advantages of favorable adaptability to a raw material, no discharge of contaminated wastewater, low energy consumption and chlorine consumption in production, stable product quality and so on.
摘要:
Described is an electrode comprising and preferably consisting of electronically active material (EAM) in nanoparticulate form and a matrix, said matrix consisting of a pyrolization product with therein incorporated graphene flakes and optionally an ionic lithium source. Also described are methods for producing a particle based, especially a fiber based, electrode material comprising a matrix formed from pyrolized material incorporating graphene flakes and rechargeable batteries comprising such electrodes.
摘要:
A compound of formula Ab′MgaMbXy or Ab′MgaMb(XOz)y for use as electrode material in a magnesium battery is disclosed, wherein A, M, X, b′, a, b, y, and z are defined herein.
摘要:
The present invention provides a carbon-coated vanadium dioxide particle which can suppress interparticle sintering during high-temperature firing, has high crystallinity and high oxidation resistance, and can maintain excellent thermochromic properties even after long-term storage or use. The present invention also aims to provide a resin composition, a coating film, a film, an interlayer film for laminated glass, a laminated glass, and a film to be attached each obtained using the carbon-coated vanadium dioxide particle. The present invention relates to a carbon-coated vanadium dioxide particle, including a vanadium dioxide particle and a coating layer containing amorphous carbon on a surface of the vanadium dioxide particle. The amorphous carbon is derived from carbon contained in an oxazine resin and has a peak intensity ratio of a G band to a D band of 1.5 or greater as determined from a Raman spectrum. The coating layer has an average thickness of 50 nm or less. The coating layer has a coefficient of variation (CV value) of thickness of 7% or less.
摘要:
A lithium iron phosphate electrochemically active material for use in an electrode and methods and systems related thereto are disclosed. In one example, a lithium iron phosphate electrochemically active material for use in an electrode is provided including, a dopant comprising vanadium and optionally a co-dopant comprising cobalt.
摘要:
A bismuth vanadate pigment is provided which pigment is doped with a combination of Mg, Al and P and optionally an element E, wherein the molar ratios of the Bi, V, Mg, Al, P and E correspond to a formula Bi Mga Alb Ec Vd Pe Of (I) wherein E is selected from the group consisting of Be, Ca, Sr, Ba, Zr, Mo, Ce and a combination thereof; 0.001≦̸0.2; 0.001≦̸b≦̸0.2; 0≦̸c≦̸1.7; 0.5≦̸d≦̸2.3; 0.001≦̸e≦̸0.5; and f denotes the number of oxygen atoms for satisfying the valence requirements of the cations. The pigment may be used as colorant in various applications, especially in coloring high molecular weight organic material, for example, coating compositions, paints, printing inks, liquid inks, plastics, films, fibers, or glazes for ceramics or glass.
摘要:
The present invention provides a system and method for producing high-purity vanadium pentoxide powder. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is purified by rectification, and then subjected to fluidized gas phase hydrolyzation and fluidized calcination, thereby producing a high-purity vanadium pentoxide product and a by-product of hydrochloric acid solution. The system and method have advantages of favorable adaptability to a raw material, no discharge of contaminated wastewater, low energy consumption in production and low operation cost, stable product quality and so on, and are suitable for large-scale industrial production of high-purity vanadium pentoxide powder with a purity of above 4N.
摘要:
The present invention provides a system and method for preparing high-purity vanadium pentoxide powder. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is subjected to purification by rectification, ammonium salt precipitation and fluidized calcination, thereby obtaining high-purity vanadium pentoxide, wherein the ammonia gas produced during calcination is condensed and then recycled for ammonium salt precipitation. The system and method have advantages of favorable adaptability to a raw material, less pollution, low energy consumption in production and low operation cost, stable product quality and so on, and are suitable for large-scale production of high-purity vanadium pentoxide powder with a purity of above 4N.