摘要:
Methods, apparatus and computer program products allow a user of DSL or the like to implement user preferences to the extent feasible in light of operational limits and conditions. In some embodiments, an operational profile is imposed on the user. User preference data is evaluated to determine the extent to which one or more user preferences can be implemented in light of the operational profile. One or more controllers can assist in collecting user preference data, evaluating the user preference data, operational data and other data and information, and implementing user preferences as feasible. Evaluation of the user preference data and operational profile and/or data can include considering the compatibility of the user's preferences and the operational profile and/or data. Controllers assisting users can include a local controller at the user's location, one or more upstream-end local controllers, one or more remote location controllers, and/or one or more other downstream-end device controllers at locations other than the user's location. Data and information can be shared among the various controllers, either using the DSL system itself or using a proprietary or other alternative data system.
摘要:
A Digital Subscriber Line (DSL) Management Center (DMC) coupled to a DSL network includes a data collection module that receives information regarding the DSL network from a plurality of sources. An analysis module is coupled to the data collection module to analyze the received information and issue a command for one or more of a plurality of DSL performance enhancement devices to optimize their operation. A command signal generation module is coupled to the analysis module to receive the issued command from the analysis module and generate a corresponding command signal for transmission to one or more of the DSL performance enhancement devices.
摘要:
A transmission system comprises a transmission channel, a transmission error value monitor and a controller. The transmission channel is arranged to carry data between a transmitter and a receiver/decoder, each communicably interfaced with the transmission channel. The transmission error value monitor is communicably interfaced with the receiver/decoder to periodically monitor for Measured transmission Error Values MEVs of such characteristics, magnitude, and/or frequency of occurrence over time, as to represent transmission errors detected on the transmission channel. The MEVs are periodically monitored after training and initialization on the receiver/decoder. The MEVs are selected from a group comprising: a bit error rate, errored seconds, errored minutes, code violations over a fixed period of time, Signal-to-Noise Ratio (SNR) measured at the receiver/decoder, and Transmission Control Protocol and Internet Protocol (TCP/IP) throughput. The transmission error value monitor is further arranged to generate an input signal based on the transmission errors detected on the transmission channel based on the MEVs. The controller is coupled with the transmitter to receive the input signal from the transmission error value monitor and to further generate control signals that instruct the transmitter and/or the receiver/decoder coding-related components to adjust their operation by changing at least an N codeword parameter outside of an interleaver of the transmission system, wherein the N codeword parameter represents a number of bytes per data frame.
摘要:
Improved DSL and/or other communication system services can be provided by motivating users, service providers and operators to implement and comply with one or more operational conditions, such as parameter value limits and/or ranges, that enhance operation of the communication system. Enhanced operation can include providing a reward such as an operational benefit to one or more users and/or mitigating problems experienced by other users in the communication system, which can be one or more communication lines. A DSL line implementing and complying with one or more operational conditions is provided with a reward (such as an operational benefit like a higher maximum data rate), which is otherwise withheld if the line fails to comply with the condition(s). Each operational condition may be set and monitored by a controller, such as a DSL optimizer that collects and analyzes operational data to determine compliance. Other requirements may be imposed for a DSL line to be eligible for the reward, such as the requiring the DSL line to provide operational data to the controller and requiring the DSL line's acceptance of control signals from the controller. The controller can use the operational data and line control to enhance system operation, for example to reduce crosstalk between lines in a common binder.
摘要:
Precoding mitigates or removes interference signals (especially crosstalk) among multiple users with interconnected transmitters in vectored DSL systems and the like. Efficient implementation is provided of the R matrix in RQ factorization that characterizes multi-user downstream vector channels (such as DMT VDSL one-sided or two-sided transmission channels). A set of precoder coefficients can vary with each tone used by each user and depend upon the encoding order of users selected for each tone. In adaptive operation, the coefficients of the R and Q matrices can be updated when changes occur to the transmission environment. Variable modulo arithmetic mitigates the power-enhancement problem, and the base of modular arithmetic also can vary with each user within a single precoder for a single tone. Some embodiments use a "subtraction only" mode while other embodiments use a dither signal and/or modulo arithmetic, though embodiments of the present invention do not require use of identical constellations by both transmitter and receiver.
摘要:
Methods, apparatus, systems and computer program products address one-sided vectoring systems that include a bonded-line set having two or more bonded DSL lines within a vectored group wherein other techniques such as precoding, tonal predictive GDFEs, tonal rotors and ordering techniques can be implemented. The performance of lines within a bonded set for a single customer can be improved for both upstream and downstream by nesting a vector coding system within, for example, GDFE and/or precoder architectures. The DSL lines within such a bonded group can have rotors applied at both transmit and receive side to achieve higher performance for these lines. The triangular matrix used by the GDFE and the precoder systems of the above- referenced applications can be modified in this context.
摘要:
A self-learning and/or self-adjusting communication controller and/or optimizer uses operational data collected from a communication system to adjust operation of the communication system to changing operational, environmental, etc. conditions and, in some embodiments, to customize operation of the communication system's lines and components so that their performance can be controlled, improved and/or optimized. In various embodiments, operational parameters and/or rules are established and/or adjusted based on information obtained from the system concerning the system's operation; information regarding margins used by a DSL system and code violation counts reported by the DSL system are used to set margin levels for one or more line sets (each line set including an individual line, a group of lines, a binder, etc.) and/or other users and/or components of the DSL system; and, the controller and/or optimizer forces a small number of test lines into as yet un-experienced and/or unimplemented operational conditions so that new knowledge can be obtained.
摘要:
An adaptive interference cancellation system is described. In one example the system operates by receiving a data signal using a DSL (Digital Subscriber Line) and receiving a reference signal, the reference signal corresponding, in part, to noise on the data signal. The reference signal is classified and a noise cancellation signal is applied to the data signal based on the classification.
摘要:
Controlling margins in a DSL modem pair is based on collected operational data. The operational data is analysed and at least one of the modems in the modem pair is instructed to use a margin-related parameter value to assist the modem pair in meeting a margin target, such as a margin limit imposed by a DSL standard or the like. A controller, such as a DSM Center, a "smart" modem unit and/or a computer system can collect and analyse the operational data and generate one or more margin-related parameter values. The margin-related parameter value may be a PSD-related value, such as the MAXNOMPSD, MAXNOMATP or PSDMASK parameter used by various ADSL systems, and may be a shaped spectral mask and/or caps or limits on bit loading for use in transmissions between the modems. In some cases, preference bands can be imposed to direct modems to favour and/or avoid certain frequencies in the modem's usable band(s). The operational data may include historical data relating to prior performance of the modem pair and prior margin compliance. A distribution of margins also may be based on operational data and may be estimated as a function of data rate. Using the estimated margin distribution, a distribution of performance parameters also is calculated, including the probabilities of line outages and probabilities of one or more error parameters exceeding minimum levels. Data rates and/or performance-related parameters may be set on the basis of the estimated performance of the system using various margin settings and levels.