摘要:
A system for visually representing estimated ablation size is provided which includes sensors that acquire location signals indicating locations of an ablation device during an ablation of an organ and ablation parameters signals indicating ablation parameters during the ablation. The system also includes memory which stores location data and ablation parameter data corresponding to the location signals and ablation parameters signals. The system also includes a processing device which generates mapping information for displaying a map of the organ and first object information for displaying a first geometrical object having a first size which represents an estimated depth of the ablation of the organ. The processing device also generates second object information for displaying, concurrently with the first geometrical object, a second geometrical object having a second size which represents an estimated width of the ablation of the organ.
摘要:
A system includes a processor and a display. The processor is configured to: (i) receive a first dataset corresponding to a first property of an organ of a patient, and a second dataset corresponding to a second property of the organ, (ii) assign a first visual attribute to the first property and a second visual attribute to the second property, and (iii) produce a map of the organ including an overlay of the first and second visual attributes. The display is configured to display the map.
摘要:
Cardiac catheterization is carried out by constructing a left atrial model of a heart of a living subject, selecting a global catheter that is dimensioned to conform to the left atrial model, representing the catheter in the left atrial model; extending the length axis of the catheter in the left atrial model to form an intersection with the foramen ovale, and reporting the intersection as a recommended site of transseptal puncture for insertion of the catheter therethrough.
摘要:
Cardiac catheterization is carried out by inserting a multi-electrode probe into a heart, constructing a position map of the electrodes, and simulating a 3-dimensional surface of the heart. The method is further carried out by placing the position map in registration with an acquired image of the heart, constructing, based on the position map, a mesh that models the 3-dimensional surface of the heart, and adjusting positions of vertices of the mesh relative to mapped points in the position map to improve a registration of the mesh with the acquired image.
摘要:
An ECG data management system is disclosed which includes a first memory portion configured to store ECG data having values corresponding to electrical signals of a heart acquired over time via a plurality of electrodes disposed at different areas of the heart. The system also includes a second memory portion configured to store the ECG data and a processing device configured to manage mapping of the ECG data by performing a mapping procedure including generating map data and one or more maps from the ECG data for display; concurrently storing the ECG data in the first memory portion and the second memory portion; and in response to a request to export the ECG data, stopping the storing of the ECG data in the second memory portion and synchronizing the ECG data stored in the second memory portion with the map data while continuing to perform the mapping procedure.
摘要:
A method, consisting of presenting on a display screen a graphical image of a heart of a patient, including icons representing a catheter that is positioned within the heart and an electrode on the catheter, while the electrode is in contact with tissue at a location in the heart. The method further includes acquiring, using the electrode, electrical signals from the tissue at the location, and processing the acquired signals so as to detect an occurrence of a predefined signal feature in the acquired signals. The method also includes, upon detecting the occurrence of the predefined signal feature, modifying a visual feature of at least one of the icon representing the electrode and the icon representing the catheter on the display screen.
摘要:
Cardiac catheterization is carried out by constructing a left atrial model of a heart of a living subject, selecting a global catheter that is dimensioned to conform to the left atrial model, representing the catheter in the left atrial model; extending the length axis of the catheter in the left atrial model to form an intersection with the foramen ovale, and reporting the intersection as a recommended site of transseptal puncture for insertion of the catheter therethrough.
摘要:
A method, using multiple patches fixed to a surface of a body, the patches including respective electrodes in contact with the surface, and at least one of the patches configured to output a signal in response to a magnetic field applied to the body. Initially, the signal is processed to compute first magnetic and first electrical locations of the at least one of the patches. Subsequently, the signal is processed to compute second magnetic and second electrical locations of the at least one of the patches. A first relation is computed between the first magnetic and electrical locations, and a second relation is computed between the second magnetic and electrical locations. When there is a difference between the first and the second relations, a magnetic location correction is computed responsively to the difference, and the correction is applied in tracking a position of a magnetic tracking sensor inside the body.
摘要:
A method, including performing a first registration of a tracking system, which is configured to track a location of a probe within a human body organ, with a baseline coordinate system, and measuring first locations of the probe within the organ following the first registration. First indicators marking the first locations with a first visual effect are presented on an image of the organ, at positions on the image that are determined based on the first registration. After measuring the first locations, a second registration of the tracking system with the baseline coordinate system is performed, and second locations of the probe within the organ following the second registration are measured. Second indicators marking the second locations with a second effect, which is visually distinct from the first effect, are presented on the image of the organ, at positions on the image that are determined based on the second registration.