摘要:
The present invention is based on the finding that parameters including a first set of parameters of a representation of a first portion of an original signal and including a second set of parameters of a representation of a second portion of the original signal can be efficiently encoded, when the parameters are arranged in a first sequence of tuples and in a second sequence of tuples, wherein the first sequence of tuples comprises tuples of parameters having two parameters from a single portion of the original signal and wherein the second sequence of tuples comprises tuples of parameters having one parameter from the first portion and one parameter from the second portion of the original signal. An efficient encoding can be achieved using a bit estimator to estimate the number of necessary bits to encode the first and the second sequence of tuples, wherein only the sequence of tuples is encoded, that results in the lower number of bits.
摘要:
In processing a multi-channel audio signal having at least three original channels, a first downmix channel and a second downmix channel are provided, which are derived from the original channels. For a selected original channel of the original channels, channel side information are calculated such that a downmix channel or a combined downmix channel including the first and the second downmix channels, when weighted using the channel side information, results in an approximation of the selected original channel. The channel side information and the first and second downmix channels form output data to be transmitted to a decoder, which, in case of a low level decoder only decodes the first and second downmix channels or, in case of a high level decoder provides a full multi-channel audio signal based on the downmix channels and the channel side information. Since the channel side information only occupy a low number of bits, and since the decoder does not use dematrixing, an efficient and high quality multi-channel extension for stereo players and enhanced multi-channel players is obtained.
摘要:
The purpose of the invention is to bridge the gap between parametric multi-channel audio coding and matrixed-surround multi-channel coding by gradually improving the sound of an up-mix signal while raising the bit-rate consumed by the side-information starting from 0 up to the bit-rates of the parametric methods. More specifically, it provides a method of flexibly choosing an "operating point" somewhere between matrixed-surround (no side-information, limited audio quality) and fully parametric reconstruction (full side-information rate required, good quality). This operating point can be chosen dynamically (i.e. varying over time) and in response to the permissible side-information rate, as it is dictated by the individual application.
摘要:
The purpose of the invention is to bridge the gap between parametric multi-channel audio coding and matrixed-surround multi-channel coding by gradually improving the sound of an up-mix signal while raising the bit-rate consumed by the side-information starting from 0 up to the bit-rates of the parametric methods. More specifically, it provides a method of flexibly choosing an "operating point" somewhere between matrixed-surround (no side-information, limited audio quality) and fully parametric reconstruction (full side-information rate required, good quality). This operating point can be chosen dynamically (i.e. varying over time) and in response to the permissible side-information rate, as it is dictated by the individual application.
摘要:
An apparatus for generating a plurality of audio channels for a first speaker setup is characterized by an imaginary speaker determiner, an energy distribution calculator, a processor and a renderer. The imaginary speaker determiner is configured to determine a position of an imaginary speaker not contained in the first speaker setup to obtain a second speaker setup containing the imaginary speaker. The energy distribution calculator is configured to calculate an energy distribution from the imaginary speaker to the other speakers in the second speaker setup. The processor is configured to repeat the energy distribution to obtain a downmix information for a downmix from the second speaker setup to the first speaker setup. The renderer is configured to generate the plurality of audio channels using the downmix information.
摘要:
An audio decoder for providing at least four bandwidth-extended channel signals on the basis of an encoded representation is configured to provide a first downmix signal and a second downmix signal on the basis of a jointly encoded representation of the first downmix signal and the second downmix signal using a multi-channel decoding. The audio decoder is configured to provide at least a first audio channel signal and a second audio channel signal on the basis of the first downmix signal using a multi-channel decoding. The audio decoder is configured to provide at least a third audio channel signal and a fourth audio channel signal on the basis of the second downmix signal using a multi-channel decoding. The audio decoder is configured to perform a multi-channel bandwidth extension on the basis of the first audio channel signal and the third audio channel signal, to obtain a first bandwidth-extended channel signal and a third bandwidth-extended channel signal. The audio decoder is configured to perform a multi-channel bandwidth extension on the basis of the second audio channel signal and the fourth audio channel signal, to obtain a second bandwidth extended channel signal and a fourth bandwidth extended channel signal. An audio encoder uses a related concept.
摘要:
An apparatus for generating loudspeaker signals is provided. The apparatus comprises an object metadata processor (110) and an object renderer (120). The object renderer (120) is configured to receive an audio object. The object metadata processor (110) is configured to receive metadata, comprising an indication on whether the audio object is screen-related, and further comprising a first position of the audio object. The object metadata processor (110) is configured to calculate a second position of the audio object depending on the first position of the audio object and depending on a size of a screen, if the audio object is indicated in the metadata as being screen-related. The object renderer (120) is configured to generate the loudspeaker signals depending on the audio object and depending on position information. The object metadata processor (110) is configured to feed the first position of the audio object as the position information into the object renderer (120), if the audio object is indicated in the metadata as being not screen-related. The object metadata processor (110) is configured to feed the second position of the audio object as the position information into the object renderer (120), if the audio object is indicated in the metadata as being screen-related.