摘要:
A method of triggering and reporting traffic statistics in a cellular network is proposed. A UE establishes an RRC connection with a base station. The UE collects traffic statistics upon detecting a trigger event. The traffic statistics comprises packet inter-arrival time. The trigger event may be detected by the UE or by the base station. The UE then determines a representation of the traffic statistics and report the result to the base station. The report may be triggered by the UE or by the base station based on another trigger event. Upon receiving the traffic statistics, the base station determines RRC reconfiguration parameters. In one example, DRX timer values are determined based on intra-burst packet inter-arrival time. In another example, RRC release timer is determined based on inter-burst packet inter-arrival time.
摘要:
A method of triggering and reporting traffic statistics in a cellular network is proposed. A UE establishes an RRC connection with a base station. The UE collects traffic statistics upon detecting a trigger event. The traffic statistics comprises packet inter-arrival time. The trigger event may be detected by the UE or by the base station. The UE then determines a representation of the traffic statistics and report the result to the base station. The report may be triggered by the UE or by the base station based on another trigger event. Upon receiving the traffic statistics, the base station determines RRC reconfiguration parameters. In one example, DRX timer values are determined based on intra-burst packet inter-arrival time. In another example, RRC release timer is determined based on inter-burst packet inter-arrival time.
摘要:
A method of obtaining system frame number for handover is provided. A UE receives a handover command from a serving base station in a serving cell. The UE performs downlink synchronization with a target base station. Upon synchronization, the UE determines a radio frame boundary of a target cell. The UE then obtains a system frame number of the target cell based on the radio frame boundary. The UE performs a handover procedure with the target cell by transmitting a RACH preamble to the target base station. The RACH preamble is transmitted over a PRACH resource determined from the system frame number without reading SFN information from a PBCH/BCH broadcasted from the target base station. Finally, the UE establishes data connection with the target base station. Handover interruption time is reduced by obtaining SFN before PBCH reading and decoding.
摘要:
A method of measurement gap reporting and configuration is provided. In a mobile network, a UE receives a capability enquiry message from a serving base station. The UE comprises one or more radio frequency modules that support a list of frequency bands and a list of carrier aggregation (CA) band combinations. In response to the enquiry, the UE transmits capability information containing measurement parameters to the base station. In one embodiment, the measurement parameters comprise need-for-gap parameters for each frequency band and each CA band combinations associated with a list of to-be-measured frequency bands of target cells. Based on the reported measurement parameters, the eNB transmits a measurement configuration message to the UE. Finally, the UE transmits a measurement gap application message back to the base station. The measurement gap application message indicates whether the UE applies MG for each configured component carrier.
摘要:
A method and apparatus for transmitter assisted Quality of Service (QoS) measurement. Time information is generated by the transmitter and transmitted along with a data transmission. A receiving device determines a QoS measurement based upon the time information and the received data. The time information indicates when the data was made available for transmission, which data transmission blocks belong to a single data transmission, and when a transmitter buffer was emptied. The QOS measurements are performance measurement such as, latency measurements and throughput measurements. The time information indicates a time reference relative to the timing of a wireless interface. The time reference is a System Frame Number (SFN), a Connection Frame Number (CFN), a relative count of frame numbers, a count of sub- frames, or a count of Time Transmission Intervals (TTIs). An aggregated QOS measurement is generated based upon the QOS measurement.
摘要:
Methods for enhanced heterogeneous network mobility are proposed. In a first novel aspect, the cell size of a target cell is considered when determining the TTT value. In one embodiment, pico-specific Time-to-Trigger (TTT) value is configured. When the target cell to be measured is a picocell, pico-specific TTT value is applied. In a second novel aspect, precise mobility state estimation (MSE) is achieved by considering the effect of cell size. In one embodiment, when counting cell changes, a cell change to/from a small cell would be counted to lesser extent than a cell change between large cells. UE uses effective parameters for measurement evaluation, by applying better speed state estimation with speed scaling and by applying parameter differentiation that can be dependent on cell size.
摘要:
A method of providing Local IP Access (LIPA) indication is proposed. In one novel aspect, an enhanced cell selection method is proposed using LIPA capability information. Based on LIPA capability related information, a UE is able to prioritize LIPA-capable cells and establish a corresponding packet data network (PDN) connection accordingly. In a first embodiment, LIPA information is statically configured in the UE. In a second embodiment, LIPA information is informed to the UE via broadcasting or unicasting Radio Resource Control (RRC) signaling.
摘要:
In an LTE/LTE-A system, a UE subscribes to an MBMS service in a source cell. In one embodiment, the UE with ongoing MBMS service handovers to a target cell. The UE obtains MBMS information of the target cell before or after the handover. The UE then determines MBMS service continuity in the target cell based on the obtained MBMS information. In another embodiment, the UE with ongoing MBMS service reselects a new cell. The UE makes cell reselection decision based on obtained MBMS information of its neighbor cells. If the subscribed MBMS service is discontinued after handover or cell reselection, the UE releases MBMS bearer and informs a NAS entity. If the subscribed MBMS service is available after handover or cell reselection, the UE keeps MBMS bearer during handover or cell reselection. By acquiring MBMS information, the UE is able to maintain continuous MBMS reception after handover or cell reselection.
摘要:
This invention presents methods leveraging artificial intelligence and machine learning (AI/ML) models to enhance wireless communications efficiency in 5G/6G networks. The processes involve storing, configuring, and transferring AI/ML models within base stations and user equipment devices (UE), allowing for localized decision-making and improved network performance. Features include dynamic model activation/deactivation, model compression/decompression, and encoding/decoding method negotiation. Periodic or condition-driven model updates ensure responsiveness to network changes, while model replacements enable upgrades and iterations. The system facilitates seamless handovers between base stations, with information sharing about model capabilities and UE specifics. Model storage and configuration can also occur in the UE, empowering it for local decision-making in variable or challenging network conditions. The techniques contribute to significant performance, efficiency, and reliability improvements in 5G/6G wireless networks.
摘要:
A method of system information (SI) acquisition with reduced signaling overhead is proposed. To reduce SI broadcast overhead, the quantity of periodic SI broadcast and the frequency of on-demand SI acquisition need to be reduced. In order to reduce the quantity of periodic SI broadcasting, on-demand SI delivery is enabled. With on-demand SI delivery, signaling overhead is proportional to the frequency of SI acquisition. From the network side, the base stations proactively provide SI delivery options and delivers SI over unicast or scheduled broadcast. From the UE side, UE determines how to acquire SI, i.e., by listening to broadcast or by sending an on-demand request via existing procedures such as a random-access procedure over a random-access channel (RACH).