Abstract:
What is described is a process for producing a metallic or ceramic moulded body from a thermoplastic composition, comprising A) 40 to 65% by volume of at least one inorganic sinterable powder A, B) 35 to 60% by volume of a mixture of B1) 50 to 95% by weight of one or more polyoxymethylene homo- or copolymers; B2) 5 to 50% by weight of a polymer which is homogeneously dissolved in B1) or is dispersed in B1) with a mean particle size of less than 1 µm, as a binder, and C) 0 to 5% by volume of a dispersing aid, where the sum of components A), B) and C) adds up to 100% by volume, by injection moulding or extrusion to give a green part, removing the binder and sintering, characterized in that the binder is removed by a) treating the moulded part with a solvent which extracts the binder component B2) from the moulded part and in which the binder component B1) is insoluble, b) then removing the solvent from the moulded part by drying, and c) then treating the moulded part in an acid-containing atmosphere which removes the binder component B1) from the moulded body.
Abstract:
Beschrieben wird ein Verfahren und eine Vorrichtung zur Herstellung von Metallpulver oder Legierungspulver einer mittleren Korngröße unter 10 µm, bestehend aus oder enthaltend mindestens eines der reaktionsfreudigen Metalle Zirkonium, Titan oder Hafnium, durch metallothermische Reduktion von Oxiden oder Halogeniden der genannten reaktionsfreudigen Metalle mit Hilfe eines Reduktionsmetalls, wobei das Metallpulver oder Legierungspulver - durch Zugabe eines passivierend wirkenden Gases oder Gasgemisches während und/oder nach der Reduktion der Oxide oder Halogenide phlegmatisiert wird und/oder - durch Zugabe eines passivierend wirkenden Feststoffs vor der Reduktion der Oxide oder Halogenide phlegmatisiert wird, wobei sowohl die Reduktion als auch die Phlegmatisierung in einem einzigen evakuierbaren und gasdichten Reaktionsgefäß durchgeführt werden.
Abstract:
A magnetic powder is provided composed of particles that, even when the particle size is refined, exhibits excellent magnetic properties, in particular, a high coercive force, for use in a high-density recording medium. The invention also provides a magnetic recording medium using the powder. The powder is an iron system magnetic powder containing, as an atomic ratio of Fe, a total of 0.01 to 10 at.% of one or more selected from W and Mo, particularly a magnetic powder comprised mainly of Fe 16 N 2 . The magnetic powder is able to exhibit a high coercive force of 238 kA/m (3000 Oe) or more. In addition to the W and Mo, the magnetic powder may contain, as an atomic ratio of Fe, a total of up to 25 at.% of one or more selected from Al and a rare earth element (defined as including Y).
Abstract:
A magnetic powder is provided composed of particles that, even when the particle size is refined, exhibits excellent magnetic properties, in particular, a high coercive force, for use in a high-density recording medium. The invention also provides a magnetic recording medium using the powder. The powder is an iron system magnetic powder containing, as an atomic ratio of Fe, a total of 0.01 to 10 at.% of one or more selected from W and Mo, particularly a magnetic powder comprised mainly of Fe 16 N 2 . The magnetic powder is able to exhibit a high coercive force of 238 kA/m (3000 Oe) or more. In addition to the W and Mo, the magnetic powder may contain, as an atomic ratio of Fe, a total of up to 25 at.% of one or more selected from Al and a rare earth element (defined as including Y).
Abstract translation:的磁性粉末被提供组成的颗粒,即使当颗粒尺寸细化,表现出优异的磁性能,特别是高矫顽力,用于在高密度记录介质的使用。 因此本发明提供使用该粉末的磁记录介质。 该粉末是含有铁系磁性粉末,如以Fe,总共0时01至10原子%的一个或一个从W和Mo,特别是主要由铁16 N 2的磁性粉末多个选定的原子比。 磁性粉末是能够表现的238千安/米(3000奥斯特)或更大的高矫顽力。 除了W和Mo,磁性粉末可含有,如在在的Fe,总共高达25%的原子比的一种或选自Al和稀土元素(定义为包括Y)中的一种以上。
Abstract:
The invention relates cold work tool steel. The steel comprises the following main components (in wt. %): C 0.5 - 2.1 N 1.3 - 3.5 Si 0.05 - 1.2 Mn 0.05 - 1.5 Cr 2.5 - 5.5 Mo 0.8 - 2.2 V 6 - 18
balance optional elements, iron and impurities.
Abstract translation:本发明涉及冷作工具钢。 钢包含以下主要组分(重量%):C 0.5 - 2.1 N 1.3 - 3.5 Si 0.05 - 1.2 Mn 0.05 - 1.5 Cr 2.5 - 5.5 Mo 0.8 - 2.2 V 6 - 18余量任选元素,铁和杂质。
Abstract:
The present invention relates to ferromagnetic particles comprising an Fe 16 N 2 compound phase in an amount of not less than 70% as measured by Mössbauer spectrum, and at least one metal element X selected from the group consisting of Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt and Si in such an amount that a molar ratio of the metal element X to Fe is 0.04 to 25%, the ferromagnetic particles having a BH max value of not less than 5 MGOe, and a process for producing the ferromagnetic particles, and further relates to an anisotropic magnet or a bonded magnet which is obtained by magnetically orienting the ferromagnetic particles. The ferromagnetic particles according to the present invention can be produced in an industrial scale and are in the form of Fe 16 N 2 particles comprising different kinds of metal elements having a large BH max value.
Abstract translation:本发明涉及由Mössbauer光谱测定的含有不少于70%的Fe 16 N 2化合物相的铁磁性颗粒和至少一种选自Mn,Ni,Ti,Ga的金属元素X ,Al,Ge,Zn,Pt和Si中的至少一种,使得金属元素X与Fe的摩尔比为0.04〜25%,铁磁性粒子的BH最大值为5MGOe以上, 产生铁磁颗粒,并且还涉及通过磁性取向铁磁颗粒获得的各向异性磁体或粘结磁体。 根据本发明的铁磁颗粒可以以工业规模生产,并且是包含具有大的BH最大值的不同种类的金属元素的Fe 16 N 2颗粒的形式。
Abstract:
Disclosed is a novel process for producing an NaZn13 magnetic alloy which enables to obtain a magnetic alloy having higher characteristics than ever before. Specifically disclosed is a magnetic alloy represented by the following composition formula: (La1-xRx)a(A1-yTMy)bHcNd (wherein R represents at least one or more elements selected from rare earth elements including Y; A represents Si, or Si and at least one or more elements selected from the group consisting of Al, Ga, Ge and Sn; TM represents Fe, or Fe and at least one or more elements selected from the group consisting of Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and x, y, a, b, c and d respectively satisfy, in atomic percent, the following relations: 0 ≤ x ≤ 0.2, 0.75 ≤ y ≤ 0.92, 5.5 ≤ a ≤ 7.5, 73 ≤ b ≤ 85, 1.7 ≤ c ≤ 14 and 0.07 ≤ d
Abstract:
Disclosed are methods of making multi-element, finely divided, alloy powders containing silver and at least two non-silver containing elements and the uses of these powders in ceramic piezoelectric devices.