Walking robot and method of controlling the same
    11.
    发明公开
    Walking robot and method of controlling the same 审中-公开
    Gehroboter und Verfahren zu dessen Steuerung

    公开(公告)号:EP2343161A1

    公开(公告)日:2011-07-13

    申请号:EP11150390.0

    申请日:2011-01-07

    IPC分类号: B25J9/00 B25J9/16 B62D57/032

    摘要: Disclosed herein are an apparatus and method for controlling stable walking of a robot based on torque. In a method of enabling stable walking by controlling torque of a hip joint portion using a Finite State Machine (FSM) without solving a complicated dynamic equation, torque of a stance leg is finally calculated using pose control torque of an upper body, pose control torque of a swing leg, and initial pose control torque of a stance leg supporting the upper body. Accordingly, the robot may stably walk with torque balance. Since gravity compensation torque is applied, a torso of the robot is not inclined and the pose of the robot is stably maintained.

    摘要翻译: 这里公开了一种用于基于扭矩来控制机器人的稳定行走的装置和方法。 在通过使用有限状态机(FSM)来控制髋关节部的扭矩而不解决复杂的动力学方式的情况下,能够通过上身的姿势控制扭矩最终计算出姿势腿的扭矩,姿势控制扭矩 的摆动腿,以及支撑上身的支腿的初始姿势控制扭矩。 因此,机器人可以以扭矩平衡稳定地行走。 由于施加了重力补偿扭矩,所以机器人的躯干不会倾斜,机器人的姿势得到稳定的保持。

    Robot control unit for stopping a movement of a robot according to a force detection value detected by a force sensor
    12.
    发明公开
    Robot control unit for stopping a movement of a robot according to a force detection value detected by a force sensor 审中-公开
    用于根据由力传感器判定值检测的停止机器人的运动的机器人控制单元

    公开(公告)号:EP1955831A2

    公开(公告)日:2008-08-13

    申请号:EP08001723.9

    申请日:2008-01-30

    申请人: FANUC LTD

    发明人: Sakano, Tetsuro

    IPC分类号: B25J9/16

    摘要: A robot control unit (10) having a designated speed adjusting means for adjusting a designated speed, which is contained in a robot command program, to a value not more than the designated speed, comprises: a decoding means (38) for decoding a movement stopping command of stopping a movement of the robot (1) according to a force detection value detected by a force sensor (2) attached to a wrist of the robot (1); a movement command means (36) for generating a movement command of moving the robot by the designated speed in the designated direction contained in the program without activating the designated speed adjusting means; a force calculation means (31) for calculating a change in a force detection value from a reference value as a present force value; and a comparison means (32) for comparing a present force value, which is repeatedly calculated at a predetermined period by the force calculation means, with a predetermined force designated value while the robot is moving. When the present force value is not less than the designated force value, the movement command means stops the robot. Due to the foregoing, a force applied from the outside to the robot can be highly sensitively detected and the robot can be highly accurately stopped.

    摘要翻译: 具有指定速度调节装置,用于调节一个指定速度,其被包含在机器人指令程序,以不低于指定速度以上的值的机器人控制单元(10),所有的,包括:解码装置(38),用于一个运动解码 停止停止机器人的运动的命令(1)至gemäß通过力传感器检测的力检测值(2)安装在机器人(1)的手腕; 的移动命令的装置(36),用于产生通过在包含在该程序而不激活指定速度调节装置所指定的方向的指定速度移动机器人的移动命令; 力计算装置(31),用于计算在从基准值作为礼物力值的力检测值的变化; 并且其在机器人正在移动在由力计算装置一预定周期重复计算值,以预定的力指定值进行比较的装置(32),用于比较当前力值,全部。 当本力值不大于指定的力值时,运动命令装置停止所述机器人。 由于上述原因,从外部施加在机器人上的力可以被高灵敏度检测到,并且机器人可被高度准确地设定停止。

    Procédé de commande hybride position/force pour robot manipulateur
    13.
    发明公开
    Procédé de commande hybride position/force pour robot manipulateur 失效
    Verfahren zur hybriden职位/ Kraft-Steuerungfüreinen Robotermanipulator。

    公开(公告)号:EP0608187A1

    公开(公告)日:1994-07-27

    申请号:EP94420015.3

    申请日:1994-01-17

    IPC分类号: B25J9/16

    摘要: L'invention concerne la commande des robots manipulateurs comprenant un macro-manipulateur combiné à un micro-manipulateur avec préhenseur de charge.
    La commande s'effectue à partir de consignes de force (F d ) et de consignes de position ( X d ), qui sont comparées à des valeurs réelles (F m , χ m ) pour produire des incréments de déplacement (Ax, Δy, Δz, Δθx, Δθy, Δθz) destinés au préhenseur de charge. Additionnés à des valeurs (χ m ) représentatives de la position actuelle, ces incréments donnent de nouvelles consignes de position ( X ' d ) du préhenseur de charge. Ces consignes sont réparties (en 29) entre le macro-manipulateur et le micro-manipulateur, en tenant compte de la déformée (ΔX) et des mobilités autorisées pour le macro-manipulateur.
    Application particulière : robot manipulateur de grande dimension et de forte capacité pour utilisation en milieu ouvert, notamment sur des chantiers.

    摘要翻译: 本发明涉及机器人操纵器的控制,其包括与具有负载夹持器的微操纵器结合的宏观操纵器。 基于力设置(F )和位置设置(chi )进行控制,与实际值(F ,chi )进行比较,以产生位移增量(DELTA x, DELTA y,DELTA z,DELTAθx,DELTAθy,DELTAθz)。 当添加到表示当前位置的值(chi )时,这些增量给出负载夹持器的新位置设置(chi )。 考虑到偏转(DELTA @)和允许到宏观操纵器的各种动作,这些设置在宏观操纵器和微型操纵器之间共享(在29处)。 特殊应用:大型,高容量的机器人操纵器用于户外环境,特别是施工现场。

    Dynamic control for manipulator
    15.
    发明公开
    Dynamic control for manipulator 失效
    操纵器动态控制

    公开(公告)号:EP0128355A3

    公开(公告)日:1985-07-10

    申请号:EP84105194

    申请日:1984-05-08

    发明人: Horak, Dan

    IPC分类号: B25J09/18

    摘要: A dynamic control for a multi-link manipulator (100) having a central processing unit (102), a linear dynamics control loop and a fast nonlinear dynamics control loop. The linear dynamics control loop has servo amplifiers (114) and associated power amplifiers (116) for actuating the links in response to the signals generated by the central processing unit (102) and sensors (110) generating the requisite feedback signals. The nonlinear dynamics control loop comprises a nonlinear dynamics control computer (118) generating correction signals corresponding to the nonlinear dynamics of the manipulator links in response to the signals generated by the central processing unit (102) and feedback signals and means for summing the correction signals (120) with the signals generated by the servo amplifiers (114). The nonlinear dynamics control computer (118) generates the correction signals for the first three links of the manipulator (100) using recursive Newton-Euler dynamics and generates the correction signals for the remaining links using Lagrangian dynamics. The nonlinear control loop is from 5 to 10 times faster than those described in the published literature.