Abstract:
Manipulator for an ultra-high vacuum chamber comprising an annular proximal base (1a) that can be securely anchored around an access opening (2a) of a tank (2) of the ultra-high vacuum chamber, a distal base (1b) connected to the proximal base (1 a) by means of a bellows element (3) with an inner space (3a) in communication with the ultra-high vacuum chamber through an access opening (2a), a sample-carrying column (4) attached to the distal base (1 b), that passes through the inner space (3a) to enter into the ultra-high-vacuum chamber, and a movement system for moving the distal base (1b) in relation to the proximal base, wherein the movement system comprises six actuators (5) each one actuated by respective electric motors (6) radially arranged around the bellows element (3) and connected to the proximal base (1 a) in an articulated manner by means of respective proximal ball joints (7) and connected to the distal base (1b) in an articulated manner by means of respective distal ball joints (8), and the bellows element (3) comprises a bellows comprising convolutions.
Abstract:
A hand held robotic system that remains stiff so long as it is operating within allowed limits, but which become actively controlled once the operator exceeds those limits. The system thus corrects deviations by more than a predetermined amount of the operator's hand motions, so that the tool remains in the allowed region even when the operator's hand deviates from the planned trajectory. The pose and path of the robotic operating head is ascertained by means of a navigation or tracking system, or by means of a proximity device to measure the closeness of the operating head to a damage sensitive feature. As the tool deviates from its predetermined path or pose, or comes too close to the hazardous area, the robot control acts to move the tool back to its predetermined pose or path, or away from the hazardous region, independently of user's hand movement.
Abstract:
The present invention concerns a hexapod system (1) comprising first (2) and second (3) supports and six linear actuators (10a, 10b, 10c, 10d, 10e, 10f), each linear actuator having two ends articulated respectively at the first (2) and second (3) supports by a ball and socket joint (41, 42, 43, 44), characterised in that it comprises: a force transfer structure (50) embedded on the first support (2) and coupled to the second support (3) by a ball and socket joint (51, 52) of which the centre of rotation (60) is located in the thickness of the second support (3). The invention also concerns an inspection and/or repair robot characterised in that it comprises a poly-articulated arm provided with a plurality of hexapod systems (1) according to the invention and in which the hexapod systems (1) are disposed in series.
Abstract:
Manipulator for an ultra-high vacuum chamber comprising an annular proximal base (1a) that can be securely anchored around an access opening (2a) of a tank (2) of the ultra-high vacuum chamber, a distal base (1b) connected to the proximal base (1 a) by means of a bellows element (3) with an inner space (3a) in communication with the ultra-high vacuum chamber through an access opening (2a), a sample-carrying column (4) attached to the distal base (1 b), that passes through the inner space (3a) to enter into the ultra-high-vacuum chamber, and a movement system for moving the distal base (1b) in relation to the proximal base, wherein the movement system comprises six actuators (5) each one actuated by respective electric motors (6) radially arranged around the bellows element (3) and connected to the proximal base (1 a) in an articulated manner by means of respective proximal ball joints (7) and connected to the distal base (1b) in an articulated manner by means of respective distal ball joints (8), and the bellows element (3) comprises a bellows comprising convolutions.
Abstract:
Es wird eine Vorrichtung insbesondere zum Positionieren von Objekten (1), mit längeneinstellbaren Stützen (2), mit einem Basisteil (3), mit einer Aufnahme (4) für das Objekt (1), wobei die Stützen (2) zwischen dem Basisteil (3) und der Aufnahme (4) angeordnet und dort jeweils beweglich gelagert sind, und mit Antrieb und Steuerung zur Einstellung der Stützen (2) angegeben. Zumindest ein Stützenpaar (5) aus zwei Stützen (2) ist gebildet so dass sich die beiden Stützen (2) des Stützenpaares (5) parallel erstrecken, wodurch sich die Form eines Parallelogramms ergibt.
Abstract:
A motion simulator, comprising a platform carried by at least three pairs of length-adjustable legs, wherein the connection between each leg and the platform comprises a first coupling, wherein the distance between the first coupling of one pair of legs is smaller than the distance between the first coupling of different pairs, wherein, viewed in the top plan view, at least two first couplings are located on a first circle and at least two further first couplings on a second circle, wherein the first and the second circle are concentric and have a different radius.
Abstract:
The invention relates to a medical imaging means including a movement mechanism (10). The movement mechanism (10) comprises a first mounting part (21) and a second mounting part (22) and at least three link arm members. The link arm assemblies of the mechanism include actuator means and a link arm member or a set of link arm members. The movement mechanism is used for moving a medical imaging device or a part thereof.
Abstract:
Robot à structure parallèle comportant une table inférieure (1) et une table supérieure (2) solidaire d'un organe effecteur, reliées par six vérins motorisés (3 à 8), les vérins étant positionnés de façon à réaliser une triangulation et chacun d'eux étant articulés d'une part à la table inférieure et d'autre part à la table supérieure selon au moins cinq axes d'articulation : trois à une extrémité (10) et au moins deux à l'autre extrémité (9), chaque vérin étant équipé d'un codeur mesurant son élongation, caractérisé en ce que la table inférieure (1) est en outre reliée à la table supérieure (2), au voisinage de leur centre de gravité respectif, par une tige télescopique (12) articulée à ses extrémités à la table inférieure et à la table supérieure selon cinq axes d'articulation : deux à l'une de ses extrémités (18) et trois à l'autre extrémité (13, 16), cette tige télescopique étant équipée de six codeurs : un (21) pour l'élongation de la tige, deux (19, 20) pour l'articulation à deux axes de type cardan et trois (14, 15, 17) pour l'articulation à trois axes de type rotule, ledit robot ayant une chaîne de commande utilisant le modèle mathématique inverse (24) du robot pour déterminer les consignes (25) d'élongation des vérins à partir d'une consigne de position (23) du plateau supérieur et utilisant le modèle mathématique direct (28) de ladite tige télescopique articulée (12), jouant le rôle de robot passif non motorisé, pour calculer la position effective (29) du plateau supérieur à partir des données (27) des six codeurs équipant ladite tige, et effectuer à partir de cette position effective, la correction (30) de position nécessaire.
Abstract:
Redundant robot of the modular type for displacing a terminal from an initial situation to a final situation. Such robot comprises a succession of stages (1i-1, 1i), each comprised of a platform and of six actuators arranged according to a closed angled architecture, a system of sensors associated to each stage, and control means for determining a robot configuration corresponding to the final situation to be reached by the terminal and for servo-controlling the actuators in order to arrange the various stages according to such configuration. Said control means comprise particularly means (26) for storing accessible spaces for each platform, means (25) for entering the final situation to be reached, means (27) for computing the robot configuration, means (28) for computing the actuator states and a servo-control interface (30) for the latter.
Abstract:
The invention relates to a method for compensating for accuracy errors of a hexapod (2), said hexapod (2) comprising a base (3), an actuation assembly (4) having six linear translation actuators (5), a control unit (6), and a movable carriage (7) comprising a platform (8) connected to the base (3) by means of the actuation assembly (4). The method includes a measurement step for determining geometry and positioning errors on the hexapod (2), the measurement step including sub-steps for determining positioning errors of the pivot centers on the carriage (7) and on the base (3), for determining length errors of the actuators (5) and for measuring positioning errors of the actuators (5) along the path thereof, the compensation method also including a step for calculating, from measurements taken, error compensation values and a step for applying said error compensation values to the control unit (6) of the hexapod (2), during subsequent use of said hexapod.