摘要:
A method of transforming geologic data relating to a subsurface region between a geophysical depth domain and a geologic age domain is disclosed. A set of topologically consistent surfaces is obtained that correspond to seismic data. The surfaces are enumerated in the depth domain. An age is assigned to each surface in the depth domain. The age corresponds to an estimated time of deposition of the respective surface. An age mapping volume is generated. An extent of the age domain is chosen. A depth mapping volume is generated. Both the age mapping volume and the depth mapping volume are used to transform geophysical, geologic, or engineering data or interpretations between the depth domain and the age domain and vice versa. The geophysical, geologic, or engineering data or interpretations transformed by at least one of the age mapping volume and the depth mapping volume are outputted.
摘要:
Method for building a seismic imaging velocity model, particularly at the boundary of a geo-body, and to perform imaging, by taking into account the elastic reflection and scattering information in the seismic data. More illumination of the base and flanks (or in general, the boundary) of the geo-body is provided from (a) inside of the geo-body (502), with elastically converted waves at the geo-body boundary used (via elastic RTM flooding); and (b) from outside the geo-body (503), by utilizing prism waves with elastic RTM to handle the phase correctly in the model building step. The increased illumination and correct elastic phase are used for geo-body boundary determination. Elastic RTM is then applied (505), along with the elastically derived imaging velocity model, to maximize the use of elastic energy in the imaging step, and to obtain the correct image with the correct phase.
摘要:
Subsurface horizon assignment. At least some of the illustrative embodiments are methods including: obtaining, by a computer system, a seismic data volume; identifying, by the computer system, a plurality of patches in the seismic data volume, and the identifying thereby creating a patch volume; displaying, on a display device, at least a portion of the seismic data volume and the plurality of patches of the patch volume; and assigning a patch of the plurality of patches to a subsurface horizon of the seismic data volume.
摘要:
There is provided a system and method for creating model of a subsurface region based on multiple depth values. The method includes selecting seeds that represent a starting location within a desired horizon surfaces and generating a plurality of candidate horizons from the selected seeds. A number of depth values from the candidate horizons may be combined into a representative depth value and an uncertainty may be computed based on discrepancies among the depth values. A model of the subsurface region may be created using the depth values and the uncertainty.
摘要:
A method can include receiving spatially located geophysical data of a geologic region as acquired by one or more sensors; solving a system of equations for multi-dimensional implicit function values within a multi-dimensional space that represents the geologic region where the system of equations are subject to a smoothness constraint and subject to a weighted curvature minimization criterion at a plurality of spatially located points based on the spatially located geophysical data; and rendering to a display, a structural model of the geologic region based at least in part on the multi-dimensional implicit function values where the structural model characterizes stratigraphy of the geologic region.
摘要:
A method for includes obtaining a well log comprising a sequence of measurements of a wellbore in a field, and generating change points in the well log based on the sequence of measurements. Each of the change points corresponds to a depth along the wellbore where a probability distribution of the well log changes. The method further includes generating a statistic for each of multiple intervals in the well log, where the intervals are defined by the plurality of change points, categorizing the intervals based on the statistic for each of the intervals to generate categorized intervals, and performing the operation based on the categorized intervals.
摘要:
Embodiments of methods of creating and interpreting animated mosaics of multiple seismic surveys are disclosed herein. Volumes from individual seismic surveys may be flattened in each seismic cube. Animations/movies may then be produced by capturing a series of z-slice movie frames through each of the flattened volumes. The individual sets of movie frames are geo-referenced to a basemap image of well locations using appropriate composition software. Where overlap exists between surveys, the surveys are prioritized and lower priority volumes are masked by higher priority volumes. This technique provides a matched, unbroken image across overlapping volumes at each stratigraphic layer. As the movie or animation plays, a moving arrow pointer shows the vertical position of the current movie frame on a stratigraphic section consisting of a seismic reference section that is optionally labelled with suitable regional sequence names and other stratigraphic zonation data.
摘要:
A method of determining a search expression describing a feature of interest in a set of data points distributed throughout a geological object is provided. Each data point contains a value for a geological attribute at that point. The search expression has a plurality of entries. The method including the steps of: (i) displaying the geological object using display codings corresponding to value subranges for the geological attribute such that all data points which have values for the geological attribute falling within a given value subrange are displayed with the same coding; (ii) selecting a plurality of data points of the feature of interest; and (iii) allocating value characters to entries of the search expression, the value characters corresponding to the value subranges for the geological attribute of the selected data points.