摘要:
An optical functional device 1 has a slab type two-dimensional photonic crystal layer 29. The layer 29 has a dielectric layer 4 and a plurality of lattice columns 5 each comprising dielectric pillars. A waveguide portion 6 is provided in the photonic crystal layer 29. A ground electrode 8 and a signal electrode 9 are formed on the dielectric layer 4 for applying a modulating voltage on light propagating in the waveguide portion 6. A layer 2 of a high dielectric constant is laminated on the dielectric layer 4. A low dielectric portion is formed direct under the waveguide portion 6 and the lattice columns 7a, 7B and 7C of at least first, second and third orders in distance with respect to said waveguide portion.
摘要:
An object of the present invention is to improve the modulation efficiency of an optical modulator in a high frequency band while satisfying the velocity matching condition. An optical modulator (1A) is provided having an optical waveguide (3) for propagating light, an electrode (2B) for applying a voltage on the waveguide for modulating the light, a signal source electrically connected to the electrode and a terminating resistance electrically connected to the electrode. The signal source has a characteristic impedance Zi and the terminating resistance has an impedance Zl satisfying the formula (Z i
摘要:
To provide a traveling-wave-type optical modulator and a method of adjusting the same, in which an occurrence of a jitter can be suppressed when an optical modulator is driven by using a driver, and, in particular, to provide a traveling-wave-type optical modulator and a method of adjusting the same, in which a degree of freedom is improved when combining the driver and the traveling-wave-type optical modulator and an occurrence of the jitter can be effectively suppressed even after combining the driver and the traveling-wave-type optical modulator. With reference to a traveling-wave-type opticalmodulator which includes a substrate having an electrooptic effect, an optical waveguide formed on the substrate, and a modulation electrode performing modulation control on a light wave propagating through the optical waveguide, a driver for controlling driving of the traveling-wave-type optical modulator is connected to the traveling-wave-type optical modulator, and a frequency characteristic (b) of an electro/optical conversion responseofthe traveling-wave-type optical modulator is adjusted so as to correct a frequency characteristic (a) of a gain of the driver. Preferably, in the adjustment of the frequency characteristic of the electro/optical conversion response, at least one of an impedance value of the modulation electrode or an impedance value of the resistor of termination is adjusted.
摘要:
An optical modulator includes an optical waveguide (32), a modulating electrode (33), a conductive layer (34), an electric signal input section (35), and connector members (36a,36b). At least a portion of the optical waveguide (32) is made of an electro-optic material. The modulating electrode (33) includes a first conductor line (33a), a second conductor line (33b) and a third conductor line (33c), which are coupled together electromagnetically, and applies a modulating electric field to a portion of the optical waveguide (32). The conductive layer (34) forms a first microstrip line with the first conductor line (32a), a second microstrip line with the second conductor line (33b) and a third microstrip line with the third conductor line (33c), respectively. Through the electric signal input section (35), an RF modulating signal is supplied to the modulating electrode (33). The connector members (36a,36b) connect the first, second and third conductor lines (33a,b,c) together at both ends. In this optical modulator, the first, second and third conductor lines (33a,b,c,) function as an odd-mode resonator for the RF modulating signal.
摘要:
A first film (8) is formed between a substrate (1) constituting an optical waveguide device (10) and a signal electrode (3) and ground electrodes (5), (6). A second film (9) is formed between the substrate (1) and a signal electrode (4) and ground electrodes (6), (7). The substrate (1), an optical waveguide (2), the signal electrode (3), the ground electrodes (5), (6) and the first film (8) constitute an optical phase modulator (10A). The substrate (1), the optical waveguide (2), the signal electrode (4), the ground electrodes (6), (7) and the second film (9) constitute an optical intensity modulator (10B). The optical waveguide element (10) is constituted by integrating the optical phase modulator(10A) and the optical intensity modulator (10B).
摘要:
A circuit for launching a modulation signal to an optical modulator, in accordance with the present invention, includes an optical modulator for modulating an optical signal, a first stripline electrically connected to the optical modulator and directing a modulation RF signal to the optical modulator, and a second stripline electrically connected to the first stripline through the optical modulator. The circuit is characterized in that the first stripline includes a first electrical device and has a first characteristic impedance, the second stripline includes a second electrical device and has a second characteristic impedance, the first characteristic impedance is equal to a characteristic impedance of a path through which the modulation RF signal is input into the first stripline, and a parallel-combined impedance of the first and second electrical devices is equal to the characteristic impedance of the path.
摘要:
An optical waveguide device 1A has an optical waveguide substrate 10A and a supporting substrate 6 supporting the substrate 10A. The substrate 10A has a main body 4 made of an electrooptic material and having first main face 4a and a second main face 4b, an optical waveguide 3 formed in or on the main body 4 and an electrode 2A, 2B or 2C formed on the side of the first main face 4a of the main body 4. The supporting substrate 6 is joined with the second main face 4b of the main body 4. A low dielectric portion 11 with a dielectric constant lower than that of the electrooptic material is formed in the supporting substrate 6.
摘要:
A first film (8) is formed between a substrate (1) and a signal electrode (3); ground electrodes (5) and (6) which constitute an optical waveguide device (10), and a second film (9) is formed between the substrate (1) and a signal electrode (4); ground electrodes (6) and (7). An optical phase modulator (10A) is composed of the substrate (1), an optical waveguide (2), the signal electrode (3), the ground electrodes (5) and (6), and the first film (8). An optical intensity modulator (10B) is composed of the substrate (1), the optical waveguide (2), the signal electrode (4), the ground electrodes (6) and (7), and the second film (9). The optical waveguide device (10) is composed of the optical phase modulator (10A) and the optical intensity modulator (10B), which are integrated monolithically.