Abstract:
Disclosed herein is a current control for a lighting assembly, which may be an LED lighting assembly, which may be a pulse width modulated ("PWM") current control or other form of current control where each current-controlled unit is uniquely addressable and capable of receiving illumination color information on a computer lighting network. In an embodiment, the invention includes a binary tree network configuration of lighting units (nodes). In another embodiment, the present invention comprises a heat dissipating housing, made out of a heat-conductive material, for housing the lighting assembly. The heat dissipating housing contains two stacked circuit boards holding respectively the power module and the light module. The light module is adapted to be conveniently interchanged with other light modules.
Abstract:
A local priority-based scanning scheme that focuses scanning to areas of a display panel whose measured characteristics are under continuous change (e.g., aging or relaxation). The algorithm identifies areas or regions needing compensation, using a current measurement from a single pixel in an area as a candidate to determine whether the rest of the region needs further compensation. The algorithm thus detects newly changed areas quickly, focusing time-consuming measurements on those areas that need high attention. Optionally, neighboring pixels sharing the same state (e.g., aging or overcompensated) as the measured pixel can be adjusted automatically given the likelihood that the neighboring pixels will also require compensation if the measured pixel needs compensation.
Abstract:
A system for a display array including a pixel circuit, the pixel circuit including a driving transistor, at least one switch transistor, a storage capacitor and a light emitting device. The system comprises a monitor for monitoring a current or voltage associated with the pixel circuit, a data process unit for controlling the operation of the display array, the data process unit being configured to extract information indicative of an aging of the pixel circuit, based on the monitored current or voltage and a driver controlled by the data process unit for providing programming and calibration data to the pixel circuit based on the extracted aging information.
Abstract:
A load driving circuit for a load having a parasitic capacitance associated therewith is provided. The load being current programmed. The driving circuit has a data line having a voltage controlling the load, a feedback loop having a lowpass filter for monitoring the voltage of the data line; and a current source for providing a current to the data line; the current source being controlled by a signal line and an output from the lowpass filter.
Abstract:
A circuit and driving technique to improve the display resolution of an AMOLED display. Sharing of switch transistors between several sub-pixels in the display leads to improved manufacturing yield by minimizing the number of transistors used. The method also allows for conventional sequential scan driving to be used. A technique to implement a stable and high impedance current sink or source onto a display substrate using a single device is also disclosed. Finally, a technique is disclosed for improving the spatial and/or temporal uniformity of a light-emitting display by providing a faster calibration of reference current sources and reducing the noise effect by improving the dynamic range, despite instability and non-uniformity of the transistor devices.
Abstract:
An electro-optical device which includes scanning lines (112) and data lines (114) intersecting with each other, pixel circuits which are provided corresponding to the intersection thereof, and shield wires (81a,81b). The pixel circuit includes a light emitting element, one transistor (140) which controls a current flowing to the light emitting element, and the other transistor (130) of which conduction state is controlled according to a scanning signal which is supplied to the scanning line, wherein the other transistor (130) selectively connects a data line to the gate electrode of the one transistor. The shield wires (81a,81b) are provided between the data line (114) and the one transistor (140) when seen in the plan view.
Abstract:
Display irregularities in light emitting devices, which develop due to dispersions per pixel in the threshold value of TFTs for supplying electric current to light emitting elements, are obstacles to increasing the image quality of the light emitting devices. An electric potential in which the threshold voltage of a TFT (105) is either added to or subtracted from the electric potential of a reset signal line (110) is stored in capacitor means (108). A voltage, in which the corresponding threshold voltage is added to an image signal, is applied to a gate electrode of a TFT (106). TFTs within a pixel are disposed adjacently, and dispersion in the characteristics of the TFTs does not easily develop. The threshold value of the TFT (105) is thus cancelled, even if the threshold values of the TFTs (106) differ per pixel, and a predetermined drain current can be supplied to an EL element (109).
Abstract:
Display irregularities in light emitting devices, which develop due to dispersions per pixel in the threshold value of TFTs for supplying electric current to light emitting elements, are obstacles to increasing the image quality of the light emitting devices. An electric potential in which the threshold voltage of a TFT (105) is either added to or subtracted from the electric potential of a reset signal line (110) is stored in capacitor means (108). A voltage, in which the corresponding threshold voltage is added to an image signal, is applied to a gate electrode of a TFT (106). TFTs within a pixel are disposed adjacently, and dispersion in the characteristics of the TFTs does not easily develop. The threshold value of the TFT (105) is thus cancelled, even if the threshold values of the TFTs (106) differ per pixel, and a predetermined drain current can be supplied to an EL element (109).