Abstract:
The present technology relates to a data processing device and a data processing method, which are capable of securing excellent communication quality in data transmission using an LDPC code. In group-wise interleave, an LDPC code in which a code length N is 16200 bits and an encoding rate r is 6/15, 8/15, or 10/15 is interleaved in units of bit groups of 360 bits. In group-wise deinterleave, a sequence of the LDPC code that has undergone the group-wise interleave is restored to an original sequence. For example, the present technology can be applied to a technique of performing data transmission using an LDPC code.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to perform a low-density parity check (LDPC) encoding on input bits using a parity check matrix to generate an LDPC codeword comprising information word bits and parity bits; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a modulation symbol, wherein the modulator is further configured to map a bit included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of the modulation symbol.
Abstract:
A rate matching method for a polar code is provided, where the method includes: acquiring a congruential sequence according to a code length of a target polar code; performing sorting processing on the congruential sequence according to a preset rule, to acquire a reference sequence; determining a mapping function according to the congruential sequence and the reference sequence; and interleaving the target polar code according to the mapping function, to generate interleaved output bits. The congruential sequence is determined based on the code length of the polar code, and interleaving of the target polar code is implemented by using the congruential sequence, which can enable a sequence of bits obtained after the interleaving to have a more uniform structure, can reduce a frame error rate and improve HARQ performance, thereby improving reliability of communication; can be applicable to rate matching processes of polar codes of various code lengths, and has good commonality and practicality.
Abstract:
The present invention relates to communication systems and methods that employ rotated constellations and time-frequency slicing in conjunction with quasi-cyclic LDPC codes and provides a transmitter and a receveiver with a parallelisable component interleaver that allows for an efficient hardware implementation, as well as corresponding methods.
Abstract:
L'invention propose un procédé de codage à protection différenciée qui permet de protéger avec un rendement de protection différent, plusieurs groupes de données dans une trame à émettre. L'invention est basée pour cela sur l'emploi d'un code correcteur du type LDPC (106) concaténé avec un code correcteur algébrique (104). Un entrelaceur (105) associe les bits systematiques du code LDPC, rangés selon la valeur de leur degré, aux groupes de données rangés selon leur niveau de priorité, tenant ainsi compte de la protection inférieure apportée par le code LDPC aux noeuds de variables de degrés élevés. L'invention propose également un procédé de décodage compatible du procédé de codage à protection différenciée.
Abstract:
The present invention provides a method of transmitting broadcast signals, the method including, encoding service data, building at least one signal frame by mapping the encoded service data, modulating data in the built at least one signal frame by an Orthogonal Frequency Division Multiplexing, OFDM, scheme and transmitting the broadcast signals having the modulated data.
Abstract:
The present technology relates to a data processing device and a data processing method that make it possible to ensure good communication quality in a data transmission using LDPC codes. In group-wise interleave, an LDPC code whose code length is 64800 bits and code rate is 6/15, 7/15, 8/15, or 9/15 is interleaved in a 360-bit group unit. In group-wise deinterleave, a sequence of the LDPC code after group-wise interleave obtained from data transmitted from a transmitting device to the original sequence. The present technology can be applied, for example, to data transmission or the like using the LDPC codes.
Abstract:
The present technology relates to a data processing device and a data processing method that make it possible to ensure good communication quality in a data transmission using LDPC codes. In group-wise interleave, an LDPC code whose code length is 16200 bits and code rate is 6/15, 7/15, 8/15, or 9/15 is interleaved in a 360-bit group unit. In group-wise deinterleave, a sequence of the LDPC code after group-wise interleave obtained from data transmitted from a transmitting device to the original sequence. The present technology can be applied, for example, to data transmission or the like using the LDPC codes.
Abstract:
The disclosure discloses a method for interference cancellation of a data channel. The method includes that: bit-level channel recoding is performed on received transport block data, and then channel estimation is performed on the coded data and multiplexed antenna data of a data channel to obtain channel estimation data; data channel reconstruction is performed on the coded data with a Reconstruction Unit (RU) as a unit by virtue of the channel estimation data; and obtained reconstruction data is subtracted from the antenna data to implement interference cancellation. The disclosure further discloses a system for interference cancellation of a data channel.