摘要:
Es wird ein Verfahren (100) zur Herstellung von Dimethylether vorgeschlagen, bei dem ein Wasserstoff und Kohlenmonoxid enthaltender Reaktionseinsatz gebildet und der Reaktionseinsatz unter Erhalt eines Dimethylether, Wasser, Methanol, Kohlendioxid, Kohlenmonoxid und Wasserstoff enthaltenden Rohprodukts einer Dimethylether-Direktsynthese unterworfen wird, wobei das Rohprodukt oder ein Teil hiervon als Trenneinsatz einer Trennung unterworfen wird, in der unter Abtrennung zumindest des überwiegenden Anteils des Dimethylethers, des Wassers und des Methanols sowie eines geringeren Anteils des Kohlenmonoxids und des Wasserstoffs aus dem Trenneinsatz ein Kohlendioxid, Kohlenmonoxid und Wasserstoff enthaltendes und an Dimethylether, Wasser und Methanol armes oder freies Zwischengemisch gebildet wird. Es ist vorgesehen, dass das Zwischengemisch in der Trennung flüssig bereitgestellt wird, dass unter Abtrennung zumindest des überwiegenden Anteils des Kohlendioxids aus dem Zwischengemisch oder einem Teil hiervon und unter Erhalt einer überwiegend oder ausschließlich Kohlendioxid enthaltenden Kohlendioxidfraktion ein Kohlenmonoxid und Wasserstoff enthaltendes und an Kohlendioxid armes oder freies Restgemisch gebildet wird, dass zumindest das Restgemisch oder ein Teil hiervon bei der Bildung des Reaktionseinsatzes verwendet wird, und dass der Reaktionseinsatz derart gebildet wird, dass ein molares Verhältnis von Wasserstoff zu Kohlenmonoxid in dem Reaktionseinsatz weniger als 2 beträgt und der Reaktionseinsatz 2 bis 10 Molprozent Kohlendioxid aufweist.
摘要:
The invention relates to an improved process and system for the synthesis of dimethyl ether (DME) from a feedstock comprising H2 and COx, wherein x=1-2. The process according to the invention comprises (a) subjecting the gaseous mixture comprising synthesis gas originating from step (c) to DME synthesis by contacting it with a catalyst capable of converting synthesis gas to DME to obtain a gaseous mixture comprising DME; (b) subjecting a gaseous mixture comprising the gaseous mixture originating from step (a) to a separation-enhanced reverse water gas shift reaction; and (c) subjecting the gaseous mixture originating from step (b) to DME/synthesis gas separation to obtain DME and a gaseous mixture comprising synthesis gas, which is recycled to step (a). Herein, the feedstock is introduced in step (a) or step (b) and the molar ratio of H2 to COx in the gaseous mixture which is subjected to step (b) is at least (x+0.8). Also a system for performing the reaction according to the invention is disclosed.
摘要:
The present invention is concerned with (1) a lithium salt compound including a lithium cation including, as a ligand, at least one ether compound selected from 2,5,8,11-tetraoxadodecane and 2,5,8,11,14-pentaoxapentadecane and a difluorophosphate anion; (2) a nonaqueous electrolytic solution having an electrolyte salt dissolved in a nonaqueous solvent, the nonaqueous electrolytic solution containing the aforementioned lithium salt compound; (3) a lithium ion secondary battery including a positive electrode, a negative electrode, and the aforementioned nonaqueous electrolytic solution; (4) a lithium ion capacitor using the aforementioned nonaqueous electrolytic solution; and (5) a production method of the aforementioned lithium salt compound, including bringing the aforementioned ether compound and lithium difluorophosphate into contact with each other. The nonaqueous electrolytic solution of the present invention is excellent in high-temperature cyclic property and output characteristics after high-temperature cycles and is capable of suppressing metal elution from a positive electrode or the like.
摘要:
A process by which the raw material, a gas comprising mainly hydrogen, carbon monoxide and carbon dioxide is introduced into a first reactor together with a catalyst, in which one or more reactions take place that produce methanol or dimethyl ether or both, which are then introduced into a second reactor adding oxygen and a catalyst and producing formaldehyde and a minority of dimethyl ether, and where there may be an excess of water, such water being extracted from the process and the remaining products being introduced into the third reactor with, optionally, an additive and exposed to catalysts and under an atmosphere at medium temperature and pressure, in order to produce three or four groups of chemical reactions that, after extracting most of the water that is generated as a residue during the process, produces as a result a liquid multifunctional product that can be used as a solvent, a foaming agent or an oxygenated fuel; said product, normally a fluid, comprises polyoxymethylene dimethyl ethers with molecular formula CH3O(CH2O)nCH3 wherein n has a value between 1 and 7.
摘要:
The present invention provides a method for preparing methyl formate and coproducing dimethyl ether. A raw material containing formaldehyde and methanol is introduced into a First Reaction Region contacting with a Catalyst A to react, and the post-reaction material is separated to obtain Constituent I. The Constituent I is introduced into a Second Reaction Region contacting with a Catalyst B to react, and the post-reaction material separating is separated to obtain methyl formate, dimethyl ether and Constituent II. At least 1% of dimethyl ether is taken as product, and the rest of dimethyl ether is recycled to the First Reaction Region. The Constituent II is recycled to the Second Reaction Region. In the raw material, the molar ratio range of formaldehyde to methanol is from 1:4 to 1:0.05, and the molar of formaldehyde and methanol are calculated according to the molar of carbon atoms contained in formaldehyde and methanol, respectively. The weight hourly space velocity of formaldehyde in the raw material ranges from 0.01 h -1 to 15.0 h -1 . The reaction temperature of the First Reaction Region ranges from 50°C to 100°C. The reaction temperature range of the Second Reaction Region is from 50°C to 200°C, and the reaction pressure range is from 0.1 MPa to 10 MPa. Each component is gaseous phase and/or liquid phase, independently. The method shows benefits, including a long catalyst life, a mild reaction condition, a high utilization ratio of raw materials, an achievement of continuous production and an application potential of large scale industrial.