摘要:
The present invention relates to novel base stable ionic liquids and uses thereof as solvents in chemical reactions, especially base catalysed chemical reactions and reactions comprising the use of strong basis.
摘要:
A catalyst system that can be used to achieve (a) preparation of allylic alcohols by rearrangement of the corresponding epoxide, when the allylic alcohol is a desired product; (b) subsequent reaction, e.g., selective oxidation, of the allylic alcohols obtained in step (a) to afford a desired product, e.g., alpha, beta-unsaturated carbonyl compounds; and/or (c) the ability to perform steps a) and b) in a one-pot process. In one embodiment, the catalyst system includes (i) at least one primary catalyst includes one or more homogeneous or heterogeneous, inorganic, organic or complex-metal-containing compound, and (ii) at least one activator/modifier comprising at least one phenolic compound.
摘要:
This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, in which said reaction product fluid exhibits phase behavior depicted by Fig. 1, wherein said process comprises (1) supplying said reaction product fluid from a reaction zone to a separation zone, (2) controlling concentration of said one or more nonpolar reaction solvents and said one or more polar reaction solvents, temperature and pressure in said separation zone sufficient to obtain by phase separation two immiscible liquid phases depicted by regions 2, 4 and 6 of Fig. 1 comprising a polar phase and a nonpolar phase and to prevent or minimize formation of three immiscible liquid phases depicted by region 5 of Fig. 1 and one homogeneous liquid phase depicted by regions 1, 3 and 7 of Fig. 1, and (3) recovering said polar phase from said nonpolar phase or said nonpolar phase from said polar phase.
摘要:
A method is described for use in a process for the conversion of an alcohol, the method including the step of contacting a composition comprising a first alcohol with a catalyst composition. Catalyst composition described comprises: i) a source of a Group VIII transition metal; ii) a phosphine ligand of formula PR1R2R3, wherein R1, R2 and R3 are the same or different; and iii) a base. In examples described, the alcohol which is converted comprises ethanol and the product comprises butanol.
摘要:
According to the present invention, there is provided a process for the disproportionation of olefinic hydrocarbons, said process comprising contacting at least one olefinic hydrocarbon with a catalyst comprising at least one of molybdenum and rhenium supported on an inorganic oxide support in the presence of a promoter selected from organoborane and organoaluminium compounds, wherein said process is carried out at a temperature in the range of from 100 to 200 °C.
wherein R 1 , R 3 , R 5 , R 6 , R 7 and R 8 are hydrogen, characterized in that R 2 and R 4 are functional group-containing aryl groups in which the functional groups are selected from the group consisting of halogen (Cl, Br, F or I), hydroxyl, alkoxy, carbonyl, carboxyl, anhydride, carbene, methacryl, epoxide, vinyl, nitrile, mercapto, amine, imine, amide and imide. The ligand is useful for preparing immobilised catalysts for performing e.g. asymmetric catalysis.
摘要:
Chelating ligand precursors for the preparation of olefin metathesis catalysts are disclosed. The resulting catalysts are air stable monomeric species capable of promoting various metathesis reactions efficiently, which can be recovered from the reaction mixture and reused. Internal olefin compounds, specifically beta-substituted styrenes, are used as ligand precursors. Compared to terminal olefin compounds such as unsubstituted styrenes, the beta-substituted styrenes are easier and less costly to prepare, and more stable since they are less prone to spontaneous polymerization. Methods of preparing chelating-carbene metathesis catalysts without the use of CuCl are disclosed. This eliminates the need for CuCl by replacing it with organic acids, mineral acids, mild oxidants or even water, resulting in high yields of Hoveyda-type metathesis catalysts. The invention provides an efficient method for preparing chelating-carbene metathesis catalysts by reacting a suitable ruthenium complex in high concentrations of the ligand precursors followed by crystallization from an organic solvent.
摘要:
A method for producing an optically active ±-trifluoromethyl-²-amino acid derivative, the method including: allowing a compound represented by the following General Formula (1) and a compound represented by the following General Formula (2) to react in the presence of a copper-optically active phosphine complex obtained from a copper compound and an optically active phosphine compound, to thereby obtain an optically active ±-trifluoromethyl-²-amino acid derivative represented by the following General Formula (3):
摘要:
A method for producing an optically active α-trifluoromethyl-β-amino acid derivative, the method including: allowing a compound represented by the following General Formula (1) and a compound represented by the following General Formula (2) to react in the presence of a copper-optically active phosphine complex obtained from a copper compound and an optically active phosphine compound, to thereby obtain an optically active α-trifluoromethyl-β-amino acid derivative represented by the following General Formula (3):